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Abstract. The phenomenon of superscaling for quasielastic lepton induced reactions at ener-
gies of a few GeV is investigated in the relativistic impulse approximation. Scaling is shown
to emerge from the analysis of electron and charged-current neutrino reactions on nuclei.
The experimental scaling function presents an asymmetric shape which is reproduced by the
model when final state interactions are accounted for through the relativistic mean field ap-
proach. Electromagnetic and weak processes lead to a similar superscaling function which
supports the universality property of scaling phenomenon.

1 The phenomenon of scaling in (e, e′) processes. Antecedents
and general aspects

The phenomenon of scaling occurs in diverse fields in Physics: solid state, atomic,
molecular, nuclear, high-energy physics. Scaling in scattering experiments is di-
rectly linked to processes where a weakly interacting projectile scatters from a com-
posite system. This is the case, for instance, of electron scattering (with energies
of the order of KeV) from electrons bound in atoms, scattering of thermal neutrons
from atoms in solids or liquids, and scattering of GeV electrons or muons from
quarks in nucleons and nuclei. Despite the extraordinary range of transferred energy
and momentum involved in these reactions, the conceptual bases used to describe
the scaling phenomena in these different fields have many features in common.

In a general process where a projectile scatters from a complex many-body sys-
tem, the concept of scaling emerges when the response of the complex system does
not longer depend on two independent variables, the energy ω and momentum q
transferred in the process, but only on a particular combination of those, called the
scaling variable. The functional independence of the complex system response with
the transfer momentum q (which sets the scale in the process) is seen as a signature
that the scattering occurs between the projectile and the basic constituents in the
target. The interest of scaling concerns two main aspects: i) the existence of scal-
ing gives us direct information on the specific reaction mechanism involved in the
scattering process considered, and ii) the scaling function is closely linked to the
spectral function corresponding to the constituents in the composite target system.
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Perhaps, the most well known process in Physics where scaling is observed cor-
responds to deep inelastic scattering (DIS) of electrons from nucleons and nuclei.
In the asymptotic regime, the hadron structure functions only depend on a single
variable, named Bjorken x-variable, given by x ≡ |Q2|/2mNω with Q2 = ω2 − q2

the transfer four-momentum and mN the nucleon mass. The independence of the
nucleon structure functions with q is known as x-scaling and leads to the descrip-
tion of the scattering process as incoherent elastic scattering between the incident
lepton and point-like contituents in the nucleon (“quarks”).

In this work our interest is focused on the phenomenon of y-scaling occurring
for quasielastic (QE) electron scattering on nuclei at intermediate to high values of
the transferred momentum q. For inclusive (e, e′) processes, the response functions
depend in general on the transfer energy ω and transfer momentum q. However,
for high enough values of q, q ≥ 500 MeV/c, the nuclear response depends only
on the variable y(q, ω) which is the minimum value of the missing momentum p
allowed by energy-momentum conservation. This is illustrated in Fig. 1 where we
present, for q and ω fixed, the kinematically allowed region for the excitation energy
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servation. It is important to point out that the kinematic relations implied by Fig. 1
do not depend on the dynamical model selected beyond the assumption of nucleon
knockout.

0
0 p

-y Y

( y < 0 )

M

ε
q and fixed

0
0 p

εM

( y > 0 )

+y Y

ω − ω

QE

ε

q and fixed

Figure 1. Integration region in the (E , p) plane for q, ω-fixed.

In order to understand better the significance of the scaling function, let us con-
sider the Plane Wave Impulse Approximation (PWIA). In the PWIA, it is assumed
that the knockout nucleon does not interact with the residual nuclear system, i.e.,
final state interactions (FSI) are neglected. Moreover, negative energy components
in the bound nucleon wave function are projected out. Thus, the exclusive (e, e′N)
cross section factorizes into a single-nucleon cross section σeN which takes care of
the γNN vertex and the spectral function S(p, E) which contains the whole depen-
dence on the nuclear structure. Then, the inclusive QE (e, e′) cross section can be
written as an integral over all final states of the exclusive (e, e′N) cross sections for
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both proton and neutron knock-out [1]:[
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]
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)[
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]
(e,e′N)

. (1)

In PWIA and assuming the spectral function to be isospin independent and the
single-nucleon cross section σeN (q, ω, p, E , φN ) to be mildly dependent on p and E
(this can be proved), we can finally write,[

dσ

dΩ′dω

]
(e,e′)

≈ σeN (q, ω; p = −y, E = 0) · F (q, y) (2)

where σeN (q, ω; p = −y, E = 0) is the relevant single-nucleon cross section evalu-
ated at fixed values of E and p, weighted by the corresponding proton and neutron
numbers and integrated over the azimuthal ejected nucleon φN angle. The func-

tion F (q, y) ≡ 2π
∫ Y (q,ω)

−y(q,ω) pdp
∫ EM (q,ω;p)

0 dES(p, E) is the scaling function which
contains direct information on the spectral function and/or momentum distribution.

Guided by the simple PWIA result, we proceed by defining the experimental
scaling function as follows,

F (q, y) =
[dσ/dωdΩ′]exp

σeN (q, ω; p = −y, E = 0)
(3)

Results are shown in Fig. 2 for 4He (left panel) and 56Fe (right panel). As observed,
F (q, y) does only show a very mild dependence on q in the region of negative y-
values (below the QE peak). In other words, at high enough values of q one seeks
the y-scaling behavior: namely, if the inclusive response scales, then F becomes
only a function of y, i.e., F (q, y) −→ F (y) ≡ F (∞, y). For y > 0 (above the QE
peak) scaling behavior breaks down due to the presence in this region of nucleon
resonances, meson production, etc.

The phenomenon of scaling can be also approached from a different point of
view using as a starting point the Relativistic Fermi Gas (RFG) model [2–4]. In spite
of its simplicity, the RFG presents some clear advantages: it is fully relativistic, it
respects Gauge invariance and it can be solved analytically providing expressions
for the nuclear tensor and response functions. The RFG model leads to a universal
(valid for all nuclei) scaling function fRFG(ψ) which only depends on the scaling
variable ψ = y

kF
[1 + O(η2

F )] with ηF ≡ kF /mN and kF the Fermi momentum.
Then, we proceed by subtracting from the experimental cross section and experi-
mental response functions the single-nucleon contribution evaluated within the RFG
model. In this way, we define the experimental superscaling function fexp(q, ψ), as
well as its longitudinal fLexp(q, ψ) and transverse fTexp(q, ψ) contributions. Scaling

of the first kind emerges if fexp(q, ψ)
q→∞−→ fexp(ψ). Scaling of the second kind
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Figure 2. Experimental scaling function F (q, y) for 4He (left) and 56Fe (right).

is satisfied if the function fexp(ψ) does not depend on the nuclear system consid-
ered. The simultaneous occurrence of both kinds of scaling is named superscaling.
Finally, scaling of the zeroth kind refers to fexp(q, ψ) = fLexp(q, ψ) = fTexp(q, ψ).

Figure 3. Function f(ψ) for nuclei A = 4 − 197 and fixed kinematics (q ≈ 1000 MeV/c).

In Fig. 3 we show fexp(ψ) for different nuclei, whereas in Fig. 4 fLexp(ψ) (left
panel) and fTexp(ψ) (right) are presented. ¿From all of these results one concludes
that scaling of the first kind is reasonable below the QE peak (ψ ≤ 0), whereas
scaling of the second kind is excellent in the same region. On the contrary, breaking
of scaling, particularly of the first kind, is observed above the QE peak (ψ ≥ 0).
This is due to effects beyond the Impulse Approximation (IA), mainly in the trans-
verse channel. Finally, the longitudinal response superscales. All these results are
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Figure 4. Scaling function fL(ψ) (left panel) and fT (ψ) (right).

summarized in Fig. 5 where the experimental superscaling function extracted from
the analysis of the longitudinal (e, e′) world data is shown and it is compared with
the RFG curve. As observed, the experimental function presents a clear asymmet-
ric shape with a long tail extended to positive ψ-values. These results constitute a
strong constraint for any theoretical model describing QE electron scattering pro-
cesses (see [2–4] for more details).
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Figure 5. Averaged fL(ψ) together with a parametrization (solid) and RFG result (dashed).

2 The model: Relativistic Impulse Approximation and Final
State Interactions

Within the Relativistic Impulse Approximation (RIA), the many-body nuclear cur-
rent operator is simply given as a sum of single-nucleon current operators that only
couple the target ground state to scattering states lying in the one-body knockout
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space. Bound nucleon wave functions are given as self-consistent Dirac-Hartree so-
lutions, whereas the outgoing nucleon state is described as a relativistic scattering
wave function. Here, different approaches have been considered to account for final
state interactions: i) use of the phenomenological relativistic optical potential, but
with the imaginary part set to zero (this is denoted as rROP), ii) use of distorted wave
functions obtained with the same relativistic mean field used to describe the initial
bound nucleon states (denoted RMF), and iii) neglect FSI, i.e., the outgoing nucleon
is simply described as a free relativistic Dirac wave function (RPWIA). Concerning
the current operator, we use the relativistic free nucleon expressions denoted as CC1
and CC2 (see [5–7] for details on the RIA model).
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Figure 6. Analysis of first kind scaling. Scaling functions for different values of the incident
electron energy. Results correspond to RMF (left panel) and rROP (right) descriptions of FSI.
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Figure 7. Analysis of second kind scaling. Scaling functions for three nuclei. Results corre-
spond to CC2 (left) and CC1 (right) nucleon operators and RMF-FSI description.

In Figs. 6 and 7 we present the RIA analysis for the first and second kind scaling,
respectively. In the first case, the CC2 operator [8] has been selected and results for
RMF (left panel) and rROP (right panel) descriptions of FSI are shown. As noticed,
a shift in ψ′ < 0 is observed for RMF and breakdown of scaling occurs at roughly
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∼ 25−30% for ψ′ > 0 (this is compatible with data). On the contrary, scaling of the
first kind is excellent in the rROP approach (likewise for RPWIA). In Fig. 7, both
current operators, CC2 (left panel) and CC1 (right) have been considered within the
RMF description of FSI. Results show that scaling of the second kind is excellent for
the CC2 operator, whereas a visible scaling violation occurs for CC1 (mainly due to
the T contribution). To conclude, we add also some comments concerning scaling
of the zeroth kind, i.e., fL(ψ) = fT (ψ) = f(ψ). This property emerges from RFG
(by construction), and it is also verified within RPWIA and non-relativistic (NR)
or semi-relativistic (SR) approaches for different FSI descriptions [9, 10]. On the
contrary, the fully relativistic approach implied by the RMF model leads to a visible
violation of the zeroth kind scaling property which is directly linked to the role
played by relativistic nuclear dynamics in the final channel in presence of strong
relativistic potentials [11].
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Figure 8. Longitudinal fL(ψ) function evaluated for three gauges and the two current opera-
tors. RMF description of FSI and comparison with data.

In Fig. 8 the RIA-RMF fL(ψ) curve is presented and it is compared with the
analysis of longitudinal (e, e′) world data. Results corresponding to rROP and RP-
WIA approaches lead to symmetrical scaling functions that do not fit experiment.
Fig. 8 shows also that only the CC2+RMF approach leads to a function fL(ψ)
which is almost independent on the gauge selected fulfilling the Coulomb sum rule:∫
dψfL(ψ) ≈ 1.

The basic conclusions can be summarized as follows: i) superscaling shows up
in RIA calculations, even in presence of very strong potentials (rROP & RMF),
ii) description of FSI through the RMF model leads to a function f(ψ) with the
right asymmetry required by the experiment, and iii) breaking of scaling is clearly
observed when FSI are present and the CC1 current operator is used.
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3 Scaling applied to neutrino-nucleus scattering

We restrict ourselves to the analysis of charge-changing neutrino-nucleus scattering
reactions, (νμ, μ). Notice that the kinematics involved in (ν, μ) is similar to (e, e′);
namely, the final lepton is assumed to be detected, hence one has control on the en-
ergy and momentum transferred in the process. The general formalism for (νμ, μ)
reactions has been presented in [9,12]. Here we focus on the QE peak and show re-
sults within the RIA model described in the previous section [7]. The single-nucleon
weak current is given by Jμw = JμV − JμA, with JμV the vector current given in terms
of the pure isovector nucleon form factors FV1 and FV2 , and JμA the axial-vector
current which depends on the axial GA and pseudoscalar GP nucleon form factors.

The general procedure to apply scaling in neutrino-nucleus scattering makes
use of the RFG results. We start by extracting the single-nucleon contribution from
the differential (ν, μ) cross section (see [12] for explicit expressions of the single-
nucleon weak responses (RFG)). Then, we proceed by reconstructing the neutrino-
nucleus cross section using the experimental scaling function extracted from exper-
imental (e, e′) data. This means that we assume the scaling function f(ψ) to be
universal and therefore, valid for CC (νμ, μ) processes. The use of the experimen-
tal superscaling function fexp(ψ) in constructing neutrino-nucleus cross sections
is known as SuperScaling Analysis (SuSA) and was introduced for the first time
in [12].

A different approach to scaling studies in neutrino reactions is based on the
use of a specific theoretical model which describes successfully (e, e′) data. This
is the case of the RIA-RMF model. We evaluate the inclusive (ν, μ) cross section
within the RIA and then divide it by the corresponding single-nucleon cross section,
weighted by the appropriate proton (Z) and/or neutron (N ) numbers. Proceeding in
this way we can analyze if the RIA scaling function does satisfy scaling properties.
Moreover, we can also determine if the RIA function f(ψ) obtained from (ν, μ)
cross sections is consistent with f(ψ) obtained from (e, e′) calculations (with the
same model). In other words, we can answer the following question: does the RIA
model lead to a similar scaling function f(ψ) for (e, e′) and (ν, μ) processes?, and
if so, how does this function compare with the experimental one fexp(ψ)?

The analysis is presented in Fig. 9 where we show results for RPWIA (top pan-
els), rROP (middle) and RMF (bottom). Left panels refer to scaling of the first kind
and right panels to the second kind. As observed, results follow similar trends to the
ones already shown for (e, e′) reactions, that is, scaling of the second kind works
in an excellent way, whereas breakdown of scaling of the first kind at some degree
is produced within the RMF model (compatible with data). Results in Fig. 10 allow
us to analyze the universal character of the scaling function and its validity for elec-
tromagnetic and weak interactions. We directly compare the functions fL(ψ) and
fT (ψ) obtained from (e, e′) cross sections with the ones corresponding to (νμ, μ−)
and (νμ, μ+) reactions. The averaged QE phenomenological function obtained from
the analysis of (e, e′) data is also included. As observed, the theoretical curve for
fL(ψ) follows the behavior of the data very closely, and this proves the capabil-
ity of the RIA combined with the RMF potential to describe satisfactorily (e, e′)
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Figure 9. Analysis of the first (left) and second (right) kind scaling for (ν, μ) reactions.

data in the longitudinal channel. On the contrary, the transverse contribution fT (ψ)
overestimates the data by ∼ 20% even in the region close to the maximum, ψ ≈ 0.

Concerning the scaling function obtained for neutrino (and antineutrino) scat-
tering reactions, one observes that it is much more in accordance with fL(ψ′) and
hence with the electron scattering longitudinal data, than with fT (ψ′). This out-
come reinforces the validity of the general assumption implied by SuSA [12], i.e.,
the use of the phenomenological scaling function (extracted from the analysis of
longitudinal QE electron scattering data) to predict CC neutrino-nucleus cross sec-
tions. However, it is also striking that f(ψ′) for νμ and νμ reactions, which are
totally dominated by the purely transverse (T , T ′) channels, coincides with the fL
function of (e, e′) instead of fT , in contrast to what one might expect.

In order to understand these results, one must be aware of some basic differences
between (e, e′) and (ν, μ) reactions. In the former, the longitudinal and transverse
channels contribute importantly (at least for some kinematics), and in both responses
isoscalar and isovector form factors enter. In contrast, only purely isovector form
factors enter in CC neutrino-nucleus scattering. In what follows we investigate how
the functions fL and fT obtained from (e, e′) RMF calculations change when the
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Figure 10. Longitudinal and transverse scaling functions for (e, e′) compared with f(ψ) eval-
uated from neutrino-nucleus scattering. All results correspond to RMF-FSI description and
CC2 current operator.

isoscalar form factors are removed. Notice that proceeding in this way, we force the
(e, e′) to be purely isovector, similar to what occurs for (ν, μ).

The results of our analysis are presented in Fig. 11. Again, we compare the
scaling functions fL and fT for electrons with those of neutrinos and antineutrinos.
Experimental (e, e′) data are also included for reference. Top and bottom panels
refer to different assumptions concerning the electromagnetic form factors entering
in (e, e′) reactions. First, the curves fL and fT in the top panel have been obtained
assuming GnM = −GpM , i.e., we remove the isoscalar contribution in the magnetic
form factor which, consequently, becomes purely isovector. The proton and neutron
electric form factors are not modified. Therefore, results for (e, e′) in the top panel
of Fig. 11 reflect the scaling functions where the isoscalar contribution only enters
through the electric content of the nucleons. As observed, results in Fig. 11, when
compared with Fig. 10, show that the discrepancy between fL and fT gets smaller
because a visible decrease occurs for fT . In other words, removing the isoscalar
contribution in GM leads to a weaker violation of the zeroth-kind scaling property
(within the RMF context).

In the bottom panel of Fig. 11 we show the results corresponding to no con-
vective terms, i.e., the electric form factors for protons and neutrons (in the electro-
magnetic sector) are forced to be zero. The reason to consider this non-convective
limit comes from the effects introduced by the isoscalar/isovector contributions
in the electric form factors of the nucleon. Obviously, the neglect of convective
terms yields neither isoscalar nor isovector contributions. While being aware of
the important differences introduced in the cross sections due to the assumption
GpE = GnE = 0, it is instructive to explore the behavior of the scaling functions in
such approximations. The results in the bottom panel of Fig. 11 show that a unique
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Figure 11. Same as previous figure, but with modified isoscalar/isovector contributions via
the nucleon form factors in the (e, e′) case.

(universal) scaling function emerges from the analysis of (e, e′) calculated cross
sections. Moreover, this function (without isoscalar terms) agrees with the one eval-
uated from (νμ, μ−) and (νμ, μ+) processes and with fexp(ψ′) extracted from the
analysis of longitudinal (e, e′) world data. Results on integrated (ν, μ) cross sections
are given in [13].

We may summarize our basic conclusions in this section as follows: i) super-
scaling behavior is satisfied by RIA calculations for all FSI descriptions studied, ii)
scaling functions obtained from QE (e, e′) and (ν, μ) cross sections are rather sim-
ilar. This result is consistent with the “universal” character of f(ψ), iii) differences
between (e, e′) and (ν, μ) results obtained within the RIA+RMF model are consis-
tent with the role played by isoscalar and isovector nucleon form factors in the two
processes, iv) breaking of zeroth kind scaling and the balance between proton and
neutron contributions in the scaling function for (e, e′) are proven to be significantly
affected by dynamical relativistic effects, mainly in the final state, and v) only the
RMF description of FSI leads to an asymmetric scaling function that fits nicely the
experimental function extracted from QE (e, e′) data.
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