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Abstract. The reanimation of the investigations dedicated to 0+ states energies andE0 tran-
sitions between them is provoked by new and more precise experimental technics that not
only made revision of the previous data but also gave a possibility to obtain a great amount
of new 0+ states and conversion electrons data. We suggest a phenomenological model for
estimation of the E0 transition nuclear matrix elements. Recently theoretical calculations [1]
predicted the existence of a 0+ state with energy 0.68 MeV in 160Dy nucleus. Arguments in
favor of existence of 681.4 keV state in 160Dy nucleus are presented.

1 Introduction

The nature of the low lying 0+ states bands in deformed nuclei still remains a
mystery under debate. The improvements in technology enable new spectroscopic
and life-time measurements of a large number of Kπ=0+ bands in nuclei which were
previously inaccessible [2]. Some authors point out importance of studying anhar-
monic effects in microscopic way in deformed nuclei [3], quadrupole and pairing
vibrational modes in conversional electrons and internal pair decay [4], or exact di-
agonalization in the restricted space of collective phonons of different types [6].
The energies and electromagnetic decay properties of the excited 0+ states are im-
portant for determining the applicability and are a test of theoretical models - the
Shell model, the Cluster-vibrational model, the Quasi-particle - phonon model, the
Deformed configuration mixing shell model, the Interacting boson approximation,
the Pairing quadrupole correlations, O(6)limit of the IBA. There are some calcu-
lations [4, 7, 11, 12] devoted to the estimation of E0 nuclear matrix elements ρ2

between different 0+ states in the same nucleus. For instance in [12] It is found that
ρ2(0+

2 → 0+
1 ) is very small in comparison with ρ2(0+

3 → 0+
1 ) which indicates that

the 0+
3 state is more collective than 0+

2 . It should be very important to determine ex-
perimentally the half-lives of the 0+ states, because, it would allow more definitive
conclusions of the structure of the excited 0+ states [11]. Often the first excited 0+

state in nuclei is considered as less collective than the next states with higher ex-
citation energy. For instance the 0+ state observed in 158Gd with excitation energy
of 0,2548 MeV (n = 20) is much more collective than the 0+ state with energy of
0,5811 MeV (n = 1) [1].
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In this talk we illustrate the predictable power of our approach by comparing
the theoretical results of E0 transition probabilities and distribution of excitation
energies of the 0+ states in 160Dy with new experimental data.

2 E0 transition matrix elements

In this paper we will estimate the E0 transition probability by factorizing the elec-
tronic and nuclear wave functions, but we will take into account the influence of the
nuclear charge distribution on the electronic factorΩ. Let us consider the simple de-
scription of the K-electrons conversion process starting with the atomic Hamiltonian
of the form [17]:

H = Hnucl + Helect −
∑
p,e

α

|rp − re| (1)

Here Hnucl is the nuclear Hamiltonian, Helect - the Hamiltonian of the electron
system. The last term is the electrons-nuclear interaction:

H ′ = −
∑
p,e

α

|rp − re| (2)

The matrix element between the initial state |i〉 and the final state |f〉 of the
system is equal to:

〈i |H ′(L = 0)| f〉 =

−
∑
p,e

α

⎡⎢⎣∫ dτnuc

rp∫
0

dτeφ
∗
fψ

∗
f

1
rp
φiψi +

∫
dτnuc

∞∫
rp

dτeφ
∗
fψ

∗
f

1
re
φiψi

⎤⎥⎦ (3)

In the expression above we replace the electron initial and final wave functions
respectively by |φi〉∼ e−ar and |φf 〉∼ eikr in infinity. In case of cut-off nuclear
charge density distribution d0Θ(R − r), for K-electrons we find the result of the
above integration (3) as

Fnuc,el(k,R) =
16π2α

(
kR

(
k2R2 + 3

)
cos(kR) − 3 sin(kR)

)
3k5

(4)

It is very important for the further consideration that this nucleus-electron factor
depends on the nuclear size R and on the electron impulse k defined by nuclear
transition energy. Before introducing the collective degrees of freedom in our calcu-
lations of the E0 nuclear transition matrix elements (4) we present two illustrative
examples:

– Let consider a nuclear characteristic d(r,R) which depends on the nuclear size
R. Then for this function we can write the identity:
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d(r,R) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
d(r,R0 + x)eip(x−ΔRdpdx (5)

Following the receipt of paper [18] the expectation values of this characteristic
between different collective states is determined by the matrix element

< n1 | d(r,R) | n2 >

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
d(r,R0 + x)eipx < n1 | e−ipΔR(b+,b) | n2 > dpdx (6)

If we assume that d(r,R) = d0θ(R − r) is the nuclear density distribution, then
the matrix element (6) for the ground state has the form:∫ ∞

−∞

∫ ∞

−∞

d0θ(R − r − x)
2π

eipx−
p2s2

2 dpdx =
1
2
d0Erfc(

r −R√
2s

) (7)

As a result of integration by dpdx in (6) we obtain instead of the starting cut-off
distribution a function which depends on the nuclear surface diffuseness S (see
Figure-1.):

θ(R − r) ⇒ 1
2
d0 Erfc[

r −R0√
2S

] (8)

Figure 1. Density distributions before and after introducing the diffuseness S as a collective
degree of freedom.

The mean square radius corresponding to the density distribution (8) is equal to:

〈
r2
ms

〉1/2
00

=

√
0.6R5

0 + 6R3
0S

2 + rR0S4

R3
0 + 3R0S2

(9)
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Small vibrations of nuclear shapes around the equilibrium can give rise to states
at low to moderate excitation energies. In the case of S = 0 we have the cut-off
density mean square radius:

〈
r2
ms

〉1/2
00

=

√
3
5
R0 (10)

– A classification of large amount of experimental data in terms of integer classi-
fication parameter recently has been done based on phenomenological monopole
part of collective Hamiltonian for the single level approach [1, 5]. The analysis
have shown that the experimental energies of low lying excited 0+ states in nu-
clei can be presented by a parabolic distribution function of number of collective
excitations:

En = An−Bn2 + C (11)

We can label every 0+ state by an additional characteristic n - the number of
monopole bosons determining it’s collective structure. Now, going back to the
transition matrix elements (4) we have the defined collective structure of the 0+

states. In Figure-2 the experimental data for the excitation energies of the 0+

states in 160Dy are arranged on a parabolic function of the number of monopole
bosons.

Figure 2. 0+ states of 160Dy fitted to a parabola (solid line). Circles are the regions of pre-
dicted states, blue stars present experimental data.

The transition energy E(n) − E(m)(i.e. electron impulse k) between different
excited 0+ states 1√

m!
(b†)m|0〉 and 1√

n!
(b†)n|0〉 in the same nucleus is determined

automatically from (11) .
The transitional matrix elements of (4) are calculated in the following way:
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f(m,n, p, w) =< n | e−ipΔR(b†,b) | m >
1√
n!m!

〈0|bne−ipΔR(b+,b))(b†)m|0〉
(12)

Using the derived in [19] expressions

n−1∑
l=0

m!
(m− n + l)!

(
n

l

)
(b†)m−n+lbl n � m (13)

m−1∑
l=0

n!
(n−m + l)!

(
m

l

)
(b†)lbn−m+l n � m (14)

and obtain

f(m,n, p, w) =
e

p2 R0
2 w2

2√
n!m!

∞∑
k=0

(R0w)2k+m−n(ip)2k+m−n (m + k)!
k!(m + k − n)!

(15)

The summation by k in (15) gives:

f(m,n, p, w) =
e

p2 R0
2 w2

2 (ip)m−n (R0 w)m−n

2 π
√
m!n!Γ (1 + m− n)

· (16)

Γ (1 + m) 1F1(1 + m, 1 + m− n,−p2 R0
2 w2)

Finally the nuclear E0 transition matrix elements are nothing but:

ρmn =
Anorm

2π

∫ ∞

−∞

∫ ∞

−∞
Fnuc,el(k,R0 + x)eipxf(m,n, p, w)dpdx (17)

Here we present analytical expressions of some matrix elements f(m,n, p, w):

f(m,m, p, w) =
e

p2w2

2 Γ (m + 1) 1F1

(
m + 1; 1;−p2w2

)
2π

f(m, 0, p, w) =
e−

1
2 p

2w2
(ip)mwm

2π

f(m,m− 1, p, w) =
ie

p2w2

2 pwΓ (m + 1) 1F1

(
m + 1; 2;−p2w2

)
2π

f(m,m− 2, p, w) = −e
p2w2

2 p2w2Γ (m + 1) 1F1

(
m + 1; 3;−p2w2

)
4π

Thus, for chosen m and n we can perform integration by dpdx in (17) and
calculate corresponding ρm→n.

For instance:
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ρ1→0 = −5
3
k4πw9 − 20

3
k4πR2

0w
7 +

16
3
k2πw7 − 10

3
k4πR4

0w
5

+16k2πR2
0w

5 − 8πw5 − 4
9
k4πR6

0w
3 +

16
3
k2πR4

0w
3

−16πR2
0w

3 − 1
63

k4πR8
0w +

16
45

k2πR6
0w − 8

3
πR4

0w

ρ2→1 = −50
3
k4πw9 − 160

3
k4πR2

0w
7 +

128
3

k2πw7 − 20k4πR4
0w

5

+96k2πR2
0w

5 − 48πw5 − 16
9
k4πR6

0w
3 +

64
3
k2πR4

0 w
3

−64πR2
0w

3 − 2
63

k4πR8
0w +

32
45

k2π R6
0w − 16

3
πR4

0w

ρ4→1 = −400
3

k4πw9 − 320k4πR2
0w

7 + 256k2πw7 − 80k4πR4
0w

5

+384k2πR2
0w

5 − 192πw5 − 32
9
k4πR6

0w
3 +

128
3

k2π R4
0w

3 − 128πR2
0w

3

The results for different transitions defined by the number of monopole bosons
m and n are analytical but because of length of the expressions we wont present
all of them here. The behavior of nuclear matrix elements ρ2

m→n for different E0
transitions is shown in Figure-3.

Figure 3. Behavior of calculated matrix elements. a - ρ2
m→0, b - ρ2

m→m−1, c - ρ2
m→m−2,

d - ρ2
m→m−3 ; m is the number of monopole bosons constructed corresponding 0+ excited

state. All the values of ρ2 divide ρ2
1→0
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ρ2
m→0 decrease rapidly with increase of number of monopole bosons m ( Figure

3a ), while ρ2
m→n
=0 increases with increase of m ( Figures 3b, 3c, 3d ).

In spite of very small values of ρ2 for E0 transition from the exited states
placed on the right part of the distribution shown in Figure-2 to the nuclear ground
state ( see Figure-3a ) we decided to check experimental evidence that could
vindicate our theoretical predictions. We start with the excited state with energy of
0.68 MeV in 160Dy with n = 8 monopole bosons. For finding-out of existence of
mentioned above 0+ state in 160Dy nucleus we measure β-spectrograms of [20]
DLNP JINR for fractions Er (two photographic plates) and Ho (one photographic
plate) using universal installation MAC-1 in ITEP [21]. At the analysis it was
found out, that in all three photographic plates to the left of known line EIK with
energy 682.3 keV below by energy on 1 keV, the peak comparable by intensity
with the specified line is confidently observed. Our attempts to carry the mentioned
peak to a conversion line or to any known from the literature [22] transitions
in 160Dy nucleus had no success. Then we proposed, that this peak is probably
caused by new transition with energy 681.3 keV, unloading the corresponding new
raised state with energy 681.3 keV to the ground state. Except for the specified
state, from experiment the states with excitation energies 1280.0, 1456.7, 1708.2
and 1952.3 keV are known. Considering, that from these levels transitions to
the entered by us 681.3 keV level are possible, we have undertaken searches
of such transitions. As a result such transitions with energy 1822.5 (1822.4(3)
and the intensity I = 0.24 ), between 2+ state 2503.8 keV and 0+ state 681.3
keV, and the transition from 681.3 keV state to 2+ with energy 86.8 keV (594.5
and I < 0.3 ) have been found out. Even these facts already are powerful
argument in favor of existence of the excited state with the energy of 681.3
keV in 160Dy nucleus. We proceed the searches of other transitions and will try
to prove the existence of another excited 0+ states ( see Figure 2 ) in 160Dy nucleus.
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