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Abstract. A systematics of the atomic nuclei in the frame of the nucleon numberA = Z+N
and the proton-neutron difference F = Z−N is considered. The classification scheme is pro-
vided by means of the non-compact algebra sp(4, R). In this scheme the nuclei are ordered
into isobaric multiplets, for wich A = fix, as well as in F-multiplets, for which F = fix. The
dependence of the mass excess Δ, the first exited states E2+ and the ratio R2 = E4+/E2+

on the nucleon number A is empirically investigated within the F -multiplets. Appropriate fil-
ters are used to study the properties of the mass excess. Many structural effects are observed.
The mirror symmetry is clearly indicated for the energy levels of the nuclei with the same
value of A and opposite F -values.

1 Introduction

Usually the chart of the atomic nuclei is imaged in the plane of the proton numberZ
and the neutron number N . It is naturally, because the protons and neutrons are the
particles from which the nucleus is composed and the levels of the shell structure
are given by their number. On the other hand there are important cases when it is
suitable to use the nucleon number A = Z + N and F = Z − N . For example:
the Weizsäcker-Bethe mass formula [1]; the description of the stability line [2],
[3], [4] the isospin symmetry, etc. Here, it is proposed to consider a systematics
of the atomic nuclei in the framework of the atomic number A = Z + N and
the proton-neutron difference F = Z − N , together with (and not instead of) the
systematics, based on Z andN . This idea is long known. First Ivan Selinov [5] made
in 1948 a table of nuclei by using the coordinates A and 1

2 (Z −N). This approach
allows one to map the nuclei into the spaces of the two irreducible infinite oscillator
representations of the non-compact algebra sp(4, R). One can systematize the even-
even and odd-odd nuclei (A - even) along the first one and the even-odd and odd-
even nuclei (A - odd) along the order. The proposed systematics is suitable for study
of the nuclear mass excess Δ and the half-life T1/2. In particular, the behaviour of Δ
as a function of F at A = fix has the known parabolic form in a very wide interval
(up to A = 260). In the case of isobaric multiplets with even A, the mass excess Δ,
considered as a function of F , exhibits a staggering behaviour, corresponding to the
alternation of the even-even and odd-odd nuclei. For even A isobaric multiplets with
A ≤ 208 and for odd A isobaric multiplets with A ≤ 209 and 229 ≤ A ≤ 253 both,
the minimum of the mass excess Δ and the maximum of the half-life T1/2, are at
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the same value of F . For the odd 211 ≤ A ≤ 227 this rule is not fulfilled, while for
the even A ≥ 210 and the odd A ≥ 255 the situation is ambiguous. The behaviour
of Δ as a function on A for a given F-multiplet (F = fix) is of a special interest.
The corresponding curves Δ = Δ(A)|F=fix are examined directly, as well as with
the help of their first and second discrete derivatives and also through a specially
constructed discrete function. All considered curves show periodically repeating
properties. All Z and N magic numbers giving the major shells are displayed by
distinct changes in the behaviour of the analyzed curves. Also, a set of sub-magic
numbers (giving sub-shells) as 6, 40, 64, etc is well seen. Noticeable changes in
the behaviour of the curves are observed at other values of Z and N , such as 18,
60, 56, etc. They can be interpreted as signs of possible substructures. The common
impression is that the curvesΔ = Δ(A)F=fix together with the corresponding filters
contain a lot of information which needs to be decoded and explained.

The dependence of the first exited states E2+ and the ratio R2 = E4+/E2+

of even-even nuclei on the atomic number A at F = fix are empirically inves-
tigated. All major magic and doubly magic numbers are clearly displayed in the
F -curves. Also a set of candidates for sub-magic numbers (giving sub-shells), es-
pecially Z = 14, 16, 40; N = 14, 16, 38, 40 is well seen. An interesting behaviour
for the nuclei with N = 88: 154

66 Dy88, 152
64 Gd88, 150

62 Sm88, 148
60 Nd88, 146

58 Ce88

is observed. The first four nuclei of this series are “left” neighbours in the corre-
sponding F -curves of the nuclei 156

66 Dy90, 154
64 Gd90, 152

62 Sm90, 150
60 Nd90, which

are considered as candidates for X(5)-nuclei (see [6] and [7]).
A symmetry of the excitation levels of mirror nuclei with respect to the inversion

of the proton-neutron differenceF is clearly observed:EJπ (A,F ) = EJπ (A,−F ),
where J and π are the angular momentum and the parity, respectively, of the states
belonging to the same band [8].

2 sp(4, R) - representations

In the space of the nucleon number A = Z + N and the proton-neutron difference
F = Z −N ≡ 2T0 (T0 is the third projection of the isotopic spin) the nuclear chart
splits into two parts: 1)A and F are even; 2) A and F are odd. This splitting makes it
possible to map the nuclei into the spaces H+ and H− of the two irreducible infinite
oscillator representations of the non-compact algebra sp(4, R) [9]. The nuclei with
even A are mapped in H+, while those with odd A are situated in H−. This is
illustrated schematically for the case of H+ in Table 1.

In this scheme the nucleon number A is the first order Casimir operator of the
“isobaric” compact subgroup u(2) ⊂ sp(4, R). The nuclei are ordered in isobaric
multiplets (isobars), corresponding to the irreducible representations of u(2) given
by the values of A (the rows in Table 1). Till now there are evidences for the exis-
tence of 294 isobars (A = 1, ..., 294). On the other hand, F is interpreted as the first
order Casimir operator of the noncompact subgroup u(1, 1) ⊂ sp(4, R). The values
of F give the oscillator representations of u(1, 1), according to which the nuclei are
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Table 1. Shematic structure of the space H+

A\F · · · 10 8 6 4 2 0 -2 -4 -6 -8 -10 · · ·
0
2
4
6
8
... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ordered in F-multiplets (the columns in Table 1). Till now there are evidences for
the existence of 70 F -multiplets (F = 8, ..., 1, 0,−1, ...,−61).

3 F-multiplets

Let us consider the curves, giving the behaviour of the mass excess Δ as a function
on A at F = fix or in other words the behaviour of Δ within the F-multiplets. We
shall refer to the corresponding curves as F -Δ-curves. In Fig. 1 and Fig. 2 examples
of F-Δ-curves at F = 0,−4,−23,−44 are given. (All experimental data on the
mass excess Δ, in MeV, are taken from [10].) These examples illustrate the main
characteristics of the F -Δ -curves:

– The values of A for which the behaviour of a given F-Δ- curve changes consider-
ably correspond to major magic Z-numbers or/and to major magic N -numbers.
These are: 56

28Ni28 at F = 0; 60
28Ni32 and 96

46Pd50 at F = −4; 123
50 Sn73 and

141
59 Pr82 at F = −23; 208

82 Pb126 at F = −44.
– The “odd” curves (F is odd) have relatively smoother behaviour while the “even”

curves (F is even) have well seen sectors of a “staggering” and a “coupling” be-
haviour. It is known that analogical observation takes place in the case of isobaric
multiplets. Note that this difference corresponds to the splitting of the nuclear
chart into two subspaces, H+ and H−.

The staggering behaviour corresponds to alternating change up/down in the discrete-
function value with the changing discrete values of the argument. In the case of even
F the staggering corresponds to a splitting of the curve into two smoother curves,
“even-even” and “odd-odd” ones. The coupling behaviour corresponds to alternat-
ing change short/long of the distance between two neighbouring points of a given
sector of the discrete curve. In the case of even F the set of nuclei corresponding
to this sector splits into couples each of them containing one even-even and one
odd-odd nuclei.

– As a rule, when the curve has a clear minimum, this minimum corresponds to
a nucleus with major magic Z or/and magic N (9646Pd50 at F = −4). From the
other hand when F is even the minimum plays a role of a reversal point in
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Figure 1. The mass excess Δ as a function of A for F = 0 (left) and F = −4 (right).

Figure 2. Δ(A) for F = −23 (left) and F = −44 (right).

which the order of the nuclei in the couple changes from (even-even,odd-odd) to
(odd-odd,even-even) (There are exceptions, especially when the minimum is not
distinctive.)

– In the case of the “even” F -Δ-curves the direction of the segments of the curve
between the “coupled points” clearly changes at the values of A corresponding to
nuclei with major magic Z or/and magic N numbers (e.g. 104

50 Sn54 at F = −4).
However, such changes take place also at other values of A, pointing out the need
of further study of the F -Δ-curves.

For more detailed investigations of the F -Δ-curves we introduce the following fil-
ters:

1. The first discrete derivative:

D1[Δ(A)] = 1/2([Δ(A) −Δ(A + 2)]. (1)
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The staggering of the first discrete derivative corresponds to coupling and/or stag-
gering behaviour of a given F -Δ-curve. When the staggering curve D1[Δ(A)] does
not cross the axis Δ = 0, the curve has only a coupling behaviour. When the stag-
gering curve D1[Δ(A)] crosses the axis, the F -Δ-curve has certainly a staggering,
which may be combined or not combined with the coupling behaviour. Compare
Fig. 3, left with Fig. 3, right.

2. The modulus |D1[Δ(A)]| of the first discrete derivative:
It clearly indicates the sector, where the staggering behaviour dominates (A =

88, ..., 112 at F = −12) and sectors with only coupling behaviour given by 88 ≤ A
and A ≥ 112 at F = −12 (compare Fig. 3 (left) with Fig. 4 (left)). The function
|D1[Δ(A)]| indicates also reversal points, where the coupling is changed from “left
to right” to “right to left” (at the reversal point the phase of the staggering changes).

3. The second discrete derivative:

D2[Δ(A)] = 1/4[Δ(A+ 2) − 2Δ(A) + Δ(A− 2)]. (2)

It indicates both the coupling and the staggering effects, but can not distinguish
them, when they take place simultaneously. From the other hand this filter is strongly
sensitive to the deviations. As a rule these deviations are displayed at the values of
A, which correspond to the magic or sub-magic numbers (see Fig. 4, right).

4. D-function:
Let us introduce the function:

D[Δ(A)] = |1/2([Δ(A) −Δ(A + 2)] − [Δ(A− 4) −Δ(A− 2)])|, (3)

for A = A0 + 4, A0 + 8, ... ,Amin − 4,

D[Δ(A)] = |1/2([Δ(A) −Δ(A − 2)] − [Δ(A + 4) −Δ(A + 2)])|, (4)

for A = Amin, Amin + 4, Amin + 8, ..., Af − 4,
where A0 and Af are the values of A corresponding to the left point of the first
couple of the F - Δ-curve and the right point of the last couple of the F -Δ - curve
respectively; Amin is defined by Δ(Amin) = minΔ(A).

The D-function indicates the changes of the direction of the segments between
“coupled points” (see Fig. 5,left and right).

All filters are used here only for even multiplets. The F -Δ- curves and the
corresponding filters contain a lot of information:

– Clear indications for the existence of the shell structure of the nuclei are seen. All
Z and N magic numbers giving the major shells are displayed by distinct changes
in the behaviour of the F -Δ-curves and of the introduced filters

– A set of sub-magic numbers (giving sub-shells) as 40, 64, etc. is well seen.
– Noticeable changes in the behaviour of the filters under consideration are ob-

served at other values of Z and N such as 18, 56, 60, etc. These effects need to
be explained.
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Figure 3. Δ(A) for F = −12 (left); D1Δ(A) for F = −12 (right).

Figure 4. |D1[Δ(A)]| for F = −12 (left); D2Δ(A) for F = −12 (right).

4 F -E2+
-curves and F -R2-curves

In the case of the even-even nuclei a lot of information is contained also in the
curves which give the dependence of E2+ and R2 = E4+/E2+ on A at F = fix.
(E4+ and E2+ are from the ground band states.) We shall call these curves F -E2+ -
curves and F -R2-curves respectively. The bundle of all known F -E2+ - curves are
displayed in Fig. 6. This picture is an other example, which shows the advantage of
the systematics of the nuclei in F -multiplets:

– The major magic and doubly magic numbers are well seen as strong peaks of the
F -E2+ -curves and deep minimums of the F -R2-curves. Some sub-magic nuclei
as 96

40Zr56 are also clearly displayed (see Fig. 6).
– The even-even nuclei are grouped in shell multiplets. It is especially well

seen for the major shells: (28, 28|50, 50), (28, 50|50, 82), (50, 50|82, 82),
(50, 82|82, 126), (82, 126|126, ?). (We denote the given major shell with
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Figure 5. D-function for F = −12 (left); D-function for F = −16 (right).

Figure 6. The behaviour of all F -E2+ -curves. The experimental data are from [10].

(MZi,MNj |MZk,MNl), where MZi,MNj and MZk,MNl are two “neigh-
bour” double magic numbers defining uniquely the shell (MZi < MZk, MNj <
MNl).

An analogical analysis can be done for the bundle of all F -R2-curves.
More detailed investigation can be provided if we consider the segments of the

F -E2+ -bundle and the F -R2-bundle in a given major shell [11]. The picture of
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Figure 7. The behaviour in all F -multiplets passing through the shell (50, 82|82, 126).

the segments of the F -E2+ -bundle and the F -R2-bundle in the framework of a
given major shell presents a detached configuration. Usually, F -E2+ -curves in a
such segment decrease monotonously from the left side (inhabited by magic nuclei)
to the bottom and after that go up monotonously to the right side (inhabited also by
magic nuclei). In the case of heavy nuclei the “bottom” is flat in a very long interval.
As to the F -R2-curves, they increase monotonously from the left side (inhabited by
magic nuclei) to the “roof” and after that go down monotonously to the right side
(inhabited by magic nuclei also). In the case of heavy nuclei the “roof” is flat in a
very long interval. In many large areas the curves do not intersect to each other, but
the external curve embraces the internal one.

But, what we are looking for are the exceptions (the deviations) from this “right”
behaviour. Let us point out several examples for deviations observed in different
shells:

In the shell (28, 28|50, 50) there are deviations at F = 0,−2,−4,−6,−8 and
the nuclei:
70
30Zn40 ;
64
32Ge32, 66

32Ge34, 68
32Ge36, 70

32Ge38, 72
32Ge40;

68
34Se34, 70

34Se36, 72
34Se38;

72
36Kr36, 74

36Kr38.
In the shell (28, 50|50, 82) the strong deviations are observed at F =

−12,−14,−16,−18 and the nuclei:
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Figure 8. The bundleR2-curves for all F -multiplets passing in the shell (50, 50|82, 82) (left),
the R2-curve for F = −16 (right).

Figure 9. The behaviour of R2-curves for the F = −24 (left) and for F = −34 (right).

96
38Sr58 ;
92
40Zr52, 94

40Zr54, 96
40Zr56

98
40Zr58;

96
42Mo54, 98

42Mo56.
A possible explanation of these deviations is an existence of a sub-shell. In the

shell (50, 50|82, 82) there are deviations at F = −12,−14,−16,−18,−20 and the
nuclei:
144
66 Dy78, 142

64 Gd78, 140
62 Sm78, 138

60 Nd78, 136
58 Ce78 N = 78-series, (see Fig. 8, left

and right).
In the shell (50, 82|82, 126) there are deviations at

F = −22,−24,−26,−28,−30 and the nuclei: 154
66 Dy88, 152

64 Gd88, 150
62 Sm88,

148
60 Nd88, 146

58 Ce88 - N = 88-series (see Fig 7 and Fig 9, left). We remark that
the first four nuclei of this series are “left” neighbours in the correspondingF -E2+ -
curves and F -R2-curves of the nuclei 156

66 Dy90, 154
64 Gd90, 152

62 Sm90, 150
60 Nd90,

which are considered as X(5)- nuclei [6] (see Fig. 9, left).
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Figure 10. E2+ energy states (left) and R2-curves (right) for all mirror nuclei in F = ±2-
multiplets.

There are also well expressed deviations in this shell at
F = −28,−30,−32,−34,−36,−38,−40,−42 and the nuclei: 184

78 Pt106,
186
78 Pt108, 188

78 Pt110, 190
78 Pt112, 192

78 Pt114, 194
78 Pt116, 196

78 Pt118, 198
78 Pt120 Pt-

series (see Fig. 7 and Fig. 9, right).
Additional information can be extracted from F -E2+ -curves and F -R2-curves,

each of them presented entirely (see, for example Fig. 8, right and Fig. 9, left and
right). On these pictures all magic and doubly magic numbers are displayed clearly.
Also, a set of candidates for sub-magic numbers (giving sub-shells) is well seen,
especially Z = 14, 16, 40 and N = 14, 16, 38, 40.

5 F-multiplets and mirror nuclei

The F-multiplets are relevant also to study the properties of the mirror nuclei. Mirror
nuclei are two nuclei with the same nucleon number A but interchanged proton
number Z and neutron number N .

They can be observed in the F -multiplets with F = ±8, 7, 6, 5, 4, 3, 2, 1. A
symmetry is observed between the energy levels of the mirror nuclei: EJπ (A,F ) =
EJπ (A,−F ), where J is the angular momentum and π is the parity of the respective
excited states of the same band. We examined this rule for all data in available
which are at F = ±1, ...,±7. The ground states of all mirror nuclei are at the
same values of Jπ . There are only three exceptions.These are the following ground
states: 16

9 F7(0−) and 16
7 N9(2−) at F = ±2; 22

13Al9(3
+) and 22

9 F13(4+) at F = ±4;
25
15P10(1/2+) and 25

10Ne15(3/2+) at F = ±5.
The considered symmetry takes place for the data at F = ±2,±4 and Jπ =

+2+, 4+, ..., 10+ of the ground band. The F -E2+ and F -R2-curves at F = ±2 are
given in Fig. 10. Another example is given in Fig. 11, left for Jπ = 1+ at F = ±2.
The mirror energy symmetry is observed also for many states of the even-odd and
odd-even nuclei belonging to the multiplets given by F = ±1,±3. See for instance
Fig. 11, right, for the case Jπ = 7/2− at F = ±1.
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Figure 11. ; E1+ energy states for all the mirror nuclei in F = ±2 -multiplets (left); E7/2−
energy states for all the mirror nuclei in F = ±1 (right).

The mirror energy symmetry is suitable for the further investigation of the
proton-rich nuclei.
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