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Abstract. Properties of effective interactions in neutron-rich matter are reflected in the
medium’s equation of state (EOS), which is a relationship among several state variables.
Spin and isospin asymmetries play an important role in the energy balance and could alter
the stability conditions of the nuclear EOS. The EOS has far-reaching consequences for nu-
merous nuclear processes in both the terrestrial laboratories and the cosmos. Presently the
EOS, especially for neutron-rich matter, is still very uncertain. Heavy-ion reactions provide a
unique means to constrain the EOS, particularly the density dependence of the nuclear sym-
metry energy. On the other hand, microscopic, self-consistent, and parameter-free approaches
are ultimately needed for understanding nuclear properties in terms of the fundamental inter-
actions among the basic constituents of nuclear systems. In this talk, after a brief review of
our recent studies on spin-polarized neutron matter, we discuss constraining the changing rate
of the gravitational constant G and properties of (rapidly) rotating neutron stars by using a
nuclear EOS partially constrained by the latest terrestrial nuclear laboratory data.

1 Introduction

Properties of matter under extreme pressure and density are of great interest in
modern physics as they are closely related to numerous important nuclear phenom-
ena in both the terrestrial laboratories and space. These properties depend on the
interactions among the constituents of matter and are reflected in the equation of
state (EOS) characterizing the medium. At high densities non-nucleonic degrees of
freedom appear gradually due to the rapid rise of nucleon chemical potentials [1].
Among these particles are strange hyperons such as Λ0 and Σ−. At even higher den-
sities matter is expected to undergo a phase transition to quark-gluon plasma [2]. Ex-
tracting the transition density from QCD lattice calculations is a formidable problem
which is still presently unsolved. These complications introduce great challenges on
our way to understanding behavior of matter in terms of interactions among its basic
ingredients.

The EOS is important for many key processes in both nuclear physics and astro-
physics. It has far-reaching consequences and governs dynamics of supernova ex-
plosions, formation of heavy elements, properties and structure of neutron stars, and
the time variations of the gravitational constantG. Presently, the detailed knowledge
of the EOS is still far from complete mainly due to the very poorly known density
dependence of the nuclear symmetry energy, Esym(ρ). Different many-body theo-
ries yield, often, rather controversial predictions for the trend of Esym(ρ) and thus
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the EOS. On the other hand, heavy-ion reactions at intermediate energies have al-
ready constrained significantly the density dependence of Esym around nuclear sat-
uration density, see e.g. [11, 13–16, 18]. Consequently, these constraints place also
significant limits on the possible configurations of both static [12] and (rapidly) ro-
tating [10] neutron stars, and the possible time variations of G [9]. In this report we
review these findings. We also revisit our recent studies on spin-asymmetric neutron
matter [8] with a particular emphasis on high densities.

2 Spin-polarized neutron matter: high-density regime

Studies of magnetic properties of dense matter are of great current interest in con-
junction with studies of pulsars, which are believed to be rotating neutron stars with
strong surface magnetic fields. Here we summarize briefly the results of our recent
study on properties of spin-polarized pure neutron matter. For a detailed description
of the calculation we refer the interested reader to Ref. [8] and the references therein.
The computation is microscopic and treats the nucleons in the medium relativisti-
cally. The starting point of every microscopic calculation of nuclear structure and
reactions is a realistic nucleon-nucleon (NN) free-space interaction. A realistic and
quantitative model for the nuclear force with reasonable theoretical foundations is
the one-boson-exchange (OBE) model [3]. Our standard framework consists of the
Bonn B OBE potential together with the Dirac-Brueckner-Hartree-Fock (DBHF)
approach to nuclear matter. A detailed description of applications of the DBHF
method to isospin symmetric and asymmetric matter, and neutron-star properties
can be found in Refs. [4–7].
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Figure 1. Left panel: Neutron effective masses used in the DBHF calculations of the EOS.
The angular dependence is averaged out; Right panel: Average energy per particle at densities
equal to 0.5, 1, 2, 3, 5, 7, 9, and 10 times ρ0 (from lowest to highest curve).
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Figure 2. Left panel: Density dependence of the spin symmetry energy obtained with the
DBHF model. Right panel: Density dependence of the ratio χF /χ.

To explore the possibility for a ferromagnetic transition the DBHF calculation
has been extended to densities as high as 10ρ0 (with ρ0 ≈ 0.16fm−3 the density of
normal nuclear matter). Here we recall that the onset of ferromagnetic instabilities
above a given density would imply that the energy-per-particle of a completely po-
larized state is lower than the one of unpolarized neutron matter. The same method
as the one used in Ref. [7] has been applied to obtain the energy-per-particle where
a self-consistent solution cannot be obtained (see Section III of Ref. [7] for details).
The (angle-averaged) neutron effective masses for both the unpolarized and fully
polarized case are shown in Fig. 1 (left panel) as a function of density. The spin-
asymmetry parameter, β = (ρ↑ − ρ↓)/(ρ↑ + ρ↓), quantifies the degree of asym-
metry of the system. It can take values between -1 and +1 with 0 and the limits
±1 corresponding to unpolarized and completely polarized matter respectively. ρ↑

and ρ↓ are the densities of neutrons with spins up/down. DBHF predictions for the
average energy per particle are shown in Fig. 1 (right panel) at densities ranging
from ρ = 0.5ρ0 to 10ρ0. What we observe is best seen through the density depen-
dence of spin-symmetry energy, S(ρ), which is the difference between the energies
of completely polarized and unpolarized neutron matter

S(ρ) = ē(ρ, β = 1) − ē(ρ, β = 0) (1)

A negative sign of S(ρ) would signify that a polarized system is more stable than
unpolarized one. The spin-symmetry energy is shown as a function of density in
Fig 2 (left panel). We see that at high density the energy shift between polarized and
unpolarized matter continues to grow, but at a smaller rate, and eventually appear to
saturate. For a detailed analysis of the observed behavior of S(ρ) see Ref. [8]. Here
we should mention that although the curvature of the spin-symmetry energy may
suggest that ferromagnetic instabilities are in principle possible within the Dirac
model, inspection of Fig. 2 reveals that such transition does not take place at least up
to 10ρ0. Clearly, it would not be appropriate to explore even higher densities without
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additional considerations, such as transition to a quark phase. In fact, even on the
high side of the densities considered here, softening of the equation of state from
additional degrees of freedom not included in the present model may be necessary
in order to draw a more definite conclusion. In the right panel of Fig. 2 we show
the density dependence of magnetic susceptibility, χ, in terms of χF , the magnetic
susceptibility of a free Fermi gas. χ(ρ) is directly related to S(ρ) through

χ =
μ2ρ

2S(ρ)
, (2)

with μ the neutron magnetic moment. Clearly, similar observations apply to both
left and right frames of Fig 2. (The magnetic susceptibility would show an infinite
discontinuity, corresponding to a sign change of S(ρ), in case of a ferromagnetic
instability.)

In summary of this section, the EOSs we obtain with the DBHF model are gen-
erally rather repulsive at the larger densities. The energy of the unpolarized system
(where all nn partial waves are allowed), grows rapidly at high density with the
result that the energy difference between totally polarized and unpolarized neutron
matter tends to slow down with density. This may be interpreted as a precursor of
spin-separation instabilities, although no such transition is actually seen up to 10ρ0.

3 Constraining a possible time variation of the gravitational
constant G with nuclear data from terrestrial laboratories

Testing the constancy of the gravitational constant G is a longstanding funda-
mental question in natural science. As first suggested by Jofré, Reisenegger and
Fernández [20], Dirac’s hypothesis [19] of a decreasing gravitational constant G
with time due to the expansion of the Universe would induce changes in the compo-
sition of neutron stars, causing dissipation and internal heating. Eventually, neutron
stars reach their quasi-stationary states where cooling, due to neutrino and photon
emissions, balances the internal heating. The correlation of surface temperatures
and radii of some old neutron stars may thus carry useful information about the
rate of change of G. Using the density dependence of the nuclear symmetry energy,
constrained by recent terrestrial laboratory data on isospin diffusion in heavy-ion
reactions at intermediate energies [11, 13–16, 18], and the size of neutron skin in
208Pb [21–24], within the gravitochemical heating formalism developed by Jofré et
al. [20], we obtain an upper limit for the relative time variation |Ġ/G| in the range
(4.5 − 21) × 10−12yr−1. In what follows we briefly review our calculation. For
details see Ref. [9].

Recently a new method, called gravitochemical heating [20], has been intro-
duced to constrain a hypothetical time variation in G, most frequently expressed as
|Ġ/G|. In Ref. [20] the authors suggested that such a variation of the gravitational
constant would perturb the internal composition of a neutron star, producing en-
tropy which is partially released through neutrino emission, while a similar fraction
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Figure 3. Left panel: Equation of state of stellar matter in β-equilibrium. The upper panel
shows the total energy density and lower panel the pressure as function of the baryon number
density (in units of ρ0); Right panel: Neutron star mass, proton fraction, Yp, and symmetry
energy, esym. The upper frame displays the neutron star mass as a function of baryon number
density. The middle frame shows the proton fraction and the lower frame the nuclear symme-
try energy as a function of density. (Symmetry energy is shown for the nucleonic EOSs only.)
The proton fraction curve of the Hyb EOS is terminated at the beginning of the quark phase.
The termination point is denoted by a “cross” character.

is eventually radiated as thermal photons. A constraint on the time variation of G is
achieved via a comparison of the predicted surface temperature with the available
empirical value of an old neutron star [25]. The gravitochemical heating formal-
ism is based on the results of Fernández and Reisenegger [26] (see also [27]) who
demonstrated that internal heating could result from spin-down compression in a ro-
tating neutron star (rotochemical heating). In both cases (gravito- and rotochemical
heatings) predictions rely heavily on the equation of state (EOS) of stellar matter
used to calculate the neutron star structure. Accordingly, detailed knowledge of the
EOS is critical for setting a reliable constraint on the time variation of G.

Currently, theoretical predictions of the EOS of neutron-rich matter diverge
widely mainly due to the uncertain density dependence of the nuclear symmetry
energy. Consequently, to provide a stringent constraint on the time variation of G,
one should attempt to reduce the uncertainty due to the Esym(ρ). Recently available
nuclear reaction data allowed us to constrain significantly the density dependence
of the symmetry energy mostly in the sub-saturation density region. While high
energy radioactive beam facilities under construction will provide a great opportu-
nity to pin down the high density behavior of the nuclear symmetry energy in the
future. We apply the gravitochemical method with several EOSs describing matter
of purely nucleonic (npeμ) as wells as hyperonic and hybrid stars. Among the nu-
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Figure 4. Left panel: Neutron star stationary surface temperature for stellar models satisfying
the mass constraint by Hotan et al. [29]. The solid lines are the predictions versus the stellar
radius for the considered neutron star sequences. Dashed lines correspond to the 68% and
90% confidence contours of the black-body fit of Kargaltsev et al. [25]. The value of |Ġ/G| =
4.5 × 10−12yr−1 is chosen so that predictions from the x = 0 EOS are just above the
observational constraints; Right panel: Same as left panel but assuming |Ġ/G| = 2.1 ×
10−11yr−1.

cleonic matter EOSs, we pay special attention to the one calculated with the MDI
interaction [28]. The symmetry energy Esym(ρ) of the MDI EOS is constrained
in the sub-saturation density region by the available nuclear laboratory data, while
in the high-density region we assume a continuous density functional. The EOS of
symmetric matter for the MDI interaction is constrained up to about five times the
normal nuclear matter density by the available data on collective flow in relativistic
heavy-ion reactions.

The EOSs applied with the gravitochemical heating method are shown in Fig. 3
(left panel). For description of these EOSs see Ref. [9] and references therein. The
parameter x is introduced in the MDI interaction to reflect the largely uncertain
density dependence of the Esym(ρ) as predicted by various many-body approaches.
Since, as demonstrated in Refs. [11, 12], only equations of state with x between -1
and 0 have symmetry energies consistent with the isospin diffusion data and mea-
surements of the skin thickness of 208Rb, we thus consider only these two limiting
cases. Fig. 3 (right panel) displays the neutron star mass (upper frame), the proton
fraction (middle frame) and the nuclear symmetry energy (lower frame). The shaded
region in the upper frame corresponds to the mass constraint by Hotan et al. [29].

As shown in Ref. [20] the stationary surface temperature is directly related to the

relative changing rate of G via T∞
s = D̃

∣∣∣ ĠG ∣∣∣2/7, where the function D̃ is a quan-

tity depending only on the stellar model and the equation of state. The correlation of
surface temperatures and radii of some old neutron stars may thus carry useful infor-
mation about the changing rate of G. Using the constrained symmetry energy with
x = 0 and x = −1 shown in Fig. 3 (right panel), within the gravitochemical heating
formalism, as shown in Fig. 4, we obtained an upper limit of the relative changing



Effective Interactions In Neutron-Rich Matter 249

rate of G in the range of (4.5−21)×10−12yr−1. This is the best available estimate
in the literature [9]. For a comparison, results with the EOS from recent DBHF cal-
culations [4,7] with the Bonn B OBE potential are also shown. Predictions with the
DBHF+Bonn B EOS give roughly the same value for the stationary surface temper-
ature, but at slightly larger neutron-star radius relative to the x = 0 EOS. For the
effect of hyperonic and quark phases of matter on the possible time variations of G
we refer the reader to our analysis in Ref. [9].

The gravitochemical heating mechanism has the potential to become a powerful
tool for constraining gravitational physics. Since the method relies on the detailed
neutron star structure, which, in turn, is determined by the EOS of stellar matter,
further progress in our understanding of properties of dense, neutron-rich matter
will make this approach more effective.

4 Constraining properties and structure of rapidly rotating
neutron stars

Because of their strong gravitational binding neutron stars can rotate very
fast [30]. The first millisecond pulsar PSR1937+214, spinning at ν = 641Hz [31],
was discovered in 1982, and during the next decade or so almost every year a new
one was reported. In the recent years the situation changed considerably with the
discovery of an anomalously large population of millisecond pulsars in globular
clusters [2], where the density of stars is roughly 1000 times that in the field of the
galaxy and which are therefore very favorable sites for formation of rapidly rotating
neutron stars which have been spun up by the means of mass accretion from a binary
companion. Presently more than 700 pulsar have been reported, and the detection
rate is rather high.

In 2006 Hessels et al. [32] reported the discovery of a very rapid pulsar J1748-
2446ad, rotating at ν = 716Hz and thus breaking the previous record (of 641Hz).
However, even this high rotational frequency is too low to affect the structure
of neutron stars with masses above 1M [30]. Such pulsars belong to the slow-
rotation regime since their frequencies are considerably lower than the Kepler
(mass-shedding) frequency νk. (The mass-shedding, or Kepler, frequency is the
highest possible frequency for a star before it starts to shed mass at the equator.)
Neutron stars with masses above 1M enter the rapid-rotation regime if their rota-
tional frequencies are higher than 1000Hz [30]. A recent report by Kaaret et al. [33]
suggests that the X-ray transient XTE J1739-285 contains the most rapid pulsar ever
detected rotating at ν = 1122Hz. This discovery has reawaken the interest in build-
ing models of rapidly rotating neutron stars [30].

Applying several nucleonic equations of state (see previous section) and the
RNS
 code developed and made available to the public by Nikolaos Ster-
gioulas [34,35], we construct one-parameter 2-D stationary configurations of rapidly

� Thanks to Nikolaos Stergioulas the RNS code is available as a public domain program at
http://www.gravity.phys.uwm.edu/rns/
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Figure 5. Left panel: Mass-radius relation. Both static (solid lines) and Keplerian (broken
lines) sequences are shown. The 1− σ error bar corresponds to the measurement of the mass
and radius of EXO 0748-676 [36]; Right panel: Gravitational mass versus circumferential
radius for neutron stars rotating at ν = 1122Hz.

rotating neutron stars (for details see Ref. [10]). The computation solves the hydro-
static and Einstein field equations for mass distributions rotating rigidly under the
assumptions of stationary and axial symmetry about the rotational axis, and reflec-
tion symmetry about the equatorial plane.

The effect of ultra-fast rotation at the Kepler (mass-shedding) frequency is ex-
amined in the left panel of Fig. 5 (see also Table 1) where the stellar gravitational
mass is given as a function of the equatorial radius. Predictions are shown for both
static (non-rotating) and rapidly rotating stars. We observe that the total gravitational
mass supported by a given EOS is increased by rotation up to 17% (see Ref. [10]).
At the same time, the circumferential radius is increased by several kilometers while
the polar radius (not shown here) is decreased by several kilometers, leading to an
overall oblate shape of the rotating star.

Models of neutron stars rotating at 1122Hz [33] are shown in Fig. 5 (right
panel). Stability with respect to the mass-shedding from equator implies that at a

Table 1. Maximum-mass rapidly rotating models at the Kepler frequency ν = νk.

EOS Mmax(M�) Increase (%) εc(×1015g cm−3) νk(Hz)

MDI(x=0) 2.25 15 2.59 1742
APR 2.61 17 2.53 1963
MDI(x=-1) 2.30 14 2.21 1512
DBHF+Bonn B 2.69 17 2.06 1685

The first column identifies the equation of state. The remaining columns exhibit the following
quantities for the maximally rotating models with maximum gravitational mass: gravitational
mass; its percentage increase over the maximum gravitational mass of static models; central
mass energy density; maximum rotational frequency.
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given gravitational mass the equatorial radius Req should be smaller than Rmaxeq

corresponding to the Keplerian limit [30]. On the other hand, the stellar sequences
are terminate at Rmineq where the star becomes unstable against axial-symmetric per-
turbations. In Fig. 5 (right panel) we observe that the range of the allowed masses
supported by a given EOS for rapidly rotating neutron stars becomes narrower than
the one of static configurations. This effect becomes stronger with increasing fre-
quency and depends upon the EOS. Since predictions from the x = 0 and x = −1
EOSs represents the limits of the neutron star models consistent with the nuclear
data from terrestrial laboratories, we conclude that the mass of the neutron star in
XTE J1739-285 is between 1.7 and 2.1M.

5 Summary

We have presented an overview of our recent studies of effective interactions
in dense neutron-rich matter and their applications to problems with astrophysical
significance. The DBHF calculation of properties of spin-polarized neutron matter
has been extended to high densities. Although no transition to a ferromagnetic phase
is actually seen up to 10ρ0, the observed behavior of the spin-symmetry energy
suggests that such transition may be possible at much higher densities. Applying
the gravitochemical heating formalism developed by Jofre et al. [20] and the EOS
with constrained symmetry energy, we have provided a limit on the possible time
variation of the gravitational constant G in the range (4.5 − 21) × 10−12yr−1. Our
findings also allowed us to constrain the mass of the neutron star in XTE J1739-285
to be between 1.7 and 2.1M.

In closing our discussion we would like to emphasize that further progress of
our understanding of properties of dense matter can be achieved through coherent
efforts of experiment, theory/modeling, and astrophysical observations.
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