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Abstract. The collective model of nuclear coherent quadrupole-octupole oscillations and ro-
tations gives a specific test for the influence of Coriolis interaction between the even-even core
and the unpaired nucleon on the split parity-doublet spectra in odd-mass nuclei. It provides
model estimations for the angular momentum projection K on the intrinsic symmetry axis
and the related intrinsic nuclear structure. Based on this result we propose a study of the con-
nection between collective shape characteristics and the intrinsic reflection-asymmetric shell
structure of the nucleus. The analysis of the Coriolis interaction with deformed reflection-
asymmetric shell-model calculations shows consistency with the results of the model of co-
herent quadrupole-octupole motion.

1 Introduction

The observed split parity-doublet spectra of odd-mass nuclei provide rich informa-
tion about the interaction between collective and single-particle motion in the nu-
clear system. In particular, the behaviour of the energy difference between two op-
posite parity counterparts in dependence on the angular momentum carries specific
information on the Coriolis coupling between the odd particle and the even-even
core [1]. On the other hand, in some cases, the angular momentum of the ground
state and/or its projection K are not unambiguously determined, which requires a
careful analysis of the related dynamic characteristics of odd-A nuclei. The obser-
vation of E1 transitions between opposite parity counterparts provides additional
interesting information about the contribution of reflection asymmetric (octupole)
deformation modes on the complicated single-particle and rotation-vibration mo-
tion of the system. These phenomena represent a challenging subject of study within
both the collective and microscopic model approaches in nuclear structure.

Starting by recently implemented analysis [1] in the framework of the collective
model of coherent quadrupole-octupole motion [2], in the present work we propose
the involvement of a deformed shell model formalism, as a necessary tool to study
in detail the interaction between single-particle and collective degrees of freedom
in nuclei. The aim of the work is to examine the consistency between the collective
and shell model approaches in the estimation of the Coriolis interaction in odd-A
nuclei. In this aspect we examine the possibility to incorporate the deformed shell
model analysis into the framework of the collective quadrupole-octupole formalism.
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2 Coherent quadrupole–octupole motion with Coriolis
interaction

We consider that the even–even core of an odd nucleus is allowed to oscillate with
respect to the quadrupole β2 and octupole β3 axial deformation variables mixed
through a centrifugal (rotation-vibration) interaction. The unpaired nucleon con-
tributes to the collective motion of the total system through the Coriolis interaction.
The collective Hamiltonian of the odd nucleus can then be taken in the form [1]
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where B2 and B3 are the effective quadrupole and octupole mass parameters and
C2 and C3 are the stiffness parameters for the respective oscillation modes. The last
part of (1) represents the centrifugal term in which the Coriolis interaction is taken
into account
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The decoupling parameter a is defined between the unpaired particle states a =
〈FK |ĵ+|F−K〉 (with K = 1/2). However, in the collective model framework it
is taken as a fitting parameter. The sign of its contribution in the potential energy
depends on the total intrinsic parity π = ± of the system (see below). The parameter
d0 characterizes the shape of the potential in the ground state.

The Schrödinger equation for the Hamiltonian (1) is solved in polar variables
β2 =

√
d/d2 η cosφ and β3 =

√
d/d3 η sinφ, with d = (d2 + d3)/2. By as-

suming a coherent interplay between the quadrupole and octupole modes, the fol-
lowing correlations between the stiffness, inertia and mass parameters are imposed
d2/(dC2) = d3/dC3 = 1/C, d2/dB2 = d3/dB3 = 1/B. As a result the energy
spectrum is obtained in the following analytic form
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where ω =
√
C/B, n = 0, 1, 2, ... and b = 2B/(�2d). The quantum num-

ber k = 1, 2, 3, ... comes from the separation of the variables φ and η. The
quadrupole-octupole eigenfunction Φ± = ψ(η)ϕ±(φ) includes the Laguerre poly-
nomials for the variable η in the part ψ(η) [2] and the function ϕ±(φ) =√

2/π sin
(
kφ + [1 − (−1)k]π/4

)
for the variable φ, with k = k+ = 1 for ϕ+

and k = k− = 2 for ϕ−. The quantum number k provides an energy difference be-
tween states with the same angular momentum and opposite parity. The total wave
function has the form

ΨπnIMK(η, φ) = ψIn(η)ϕ±(φ)
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Figure 1. Experimental and theoretical parity-doublet splitting in 219Ra and 239Am.

Figure 2. Experimental and theoretical parity doublet-splitting in 223Ra with (a) K = 3/2
and (b) K = 1/2. Data from [3].

where the total intrinsic parity π = πϕ · πχ is determined by the parity πϕ of the
even-core oscillation function ϕ±(φ) and the parity of the single-particle function
FK .

Eq. (3) has been applied to describe the split parity-doublet structure of the spec-
tra in a wide range of odd-mass nuclei [1]. Reasonable model descriptions have been
obtained also for the available B(E1) and B(E2) transition probabilities in these
spectra. In addition the model analysis shows that the parity-doublet splitting, given
by the quantity ΔE(I±) = E(I+) − E(I−) exhibits a staggering behaviour as a
function of the angular momentum when the spectrum is perturbed by the Coriolis
interaction. This is illustrated in Fig. 1(a) for the spectrum of 219Ra with K = 1/2.
In Fig. 1(b) it is shown that for the nucleus 239Am with K �= 1/2 (reduced Coriolis
interaction) a smooth behavior of the parity splitting is observed.

The doublet-splitting analysis allows a detailed estimation of the possible val-
ues of the angular momentum projection K on which the parity-doublet structure
is built. This is illustrated in Fig. 2 for the nucleus 223Ra. It is seen in Fig. 2(a)
that the experimentally assumed value K = 3/2 does not support the staggering
behaviour of the parity splitting observed in the experimental data. Fig. 2(b) shows
that if the value K = 1/2 is assumed, the staggering behaviour of ΔE(I±) is re-
produced. In such a way the staggering effect indicates a strong contribution of an
intrinsic K = 1/2 configuration which is related to the Coriolis coupling interac-
tion. The considered example suggests a possibility to get information about the
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single-particle orbitals which contribute to the K-configurations associated with the
particular collective spectrum of the nucleus.

The above result naturally indicates the need of a deeper microscopic analysis
of the single-particle motion in odd-mass nuclei with quadrupole-octupole degrees
of freedom and its relation to the collective motion of the system. As a step in this
direction we propose the involvement of the quadrupole-octupole deformed shell
model formalism which is considered to be capable of describing the single-particle
motion in the field of the reflection asymmetric deformed even-even core of the
nucleus. The first important task, that will be addressed in the next section, is to
estimate the contribution of the Coriolis interaction on the basis of the shell model
calculations and to compare the result with the estimations suggested by the above
collective model approach.

3 Coriolis interaction by the quadrupole-octupole deformed shell
model

To examine the Coriolis interaction from the intrinsic point of view, we refer to the
shell model analysis. As far as the considered nuclei are characterized by shape de-
formations with a presence of reflection asymmetry, we use the formalism of the
quadrupole-octupole deformed shell model for which a numerical code is avail-
able [4].

The Hamiltonian of the model is

Hws = T + Vws + Vs.o. +
1
2
(1 + τ3)VCoul, (5)

where

Vws(r, θ, φ) = −V0

[
1 + exp

(
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)]−1

is the Woods-Saxon potential with quadrupole, octupole and higher-multipolarity
deformations up to β6

R(θ, ϕ) = c(β̂)R0

(
1 +
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λ=2
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)
, β̂ ≡ (β2, β3, β4, β5, β6).

Vs.o. and VCoul are the spin-orbit and Coulomb terms whose analytic form is given
in [4]. The quantity c(β̂) is the scaling (volume) factor, also given in [4].

The Hamiltonian (5) is diagonalized in the deformed harmonic-oscillator basis
|nρnzΛΣ〉 in cylindrical coordinates η = [(Mω⊥)/�] ρ2, (ρ2 = x2 + y2), ξ =√

(Mωz)/� z

|nρnzΛΣ〉 = ψΛnρ
(ρ)ψnz (z)ψΛ(ϕ)χ(Σ)

where [5]
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and χ(Σ) is the spin part with Σ = ±1/2.
By using the above formalism one is capable to determine the single-particle

orbital in the deformed Woods-Saxon potential occupied by the odd particle in the
odd-A nuclear system. Since in the deformed system the intrinsic angular momen-
tum j is not a good quantum number, this orbital is characterized by the quantum
number Ω = Λ + Σ, which can be interpreted as the third projection of j. Due to
the axial symmetry Ω appears equal to the third projection K of the total angular
momentum I . Thus the solution of the deformed shell model problem could provide
an intrinsic estimation for the quantum number K .

Hence the following question naturally arises. Is it possible to apply consistently
both the collective model of sec. 2 and the deformed shell model so as to determine
unambiguously the intrinsic structure with the quantum number K on which the
split parity doublets in odd-A nuclei are built? If so, one can further try to solve
simultaneously the eigenvalue problem for the collective Hamiltonian (1) and the
single-particle Hamiltonian (5) providing a useful tool to study the interaction be-
tween collective and intrinsic degrees of freedom in nuclei.

The following two items represent important steps in the addressing of the
above question. First, the shell model Hamiltonian requires constant values for the
quadrupole and octupole deformation variables β2 and β3 as input values. On the
other hand the model of coherent quadrupole-octupole motion does not impose
static deformations. Therefore, one has either to include the shell model solution
into the collective model problem as a function of both deformation variables, or to
try to determine their mean values in the collective model and to apply them as an
input for the shell model calculation. Since this task is not straightforwardly solv-
able, in the present work we use the experimentally estimated values of β2 and β3

as the shell model input.
Second, once the quantum numberK is determined in the shell model one has to

be able to determine the Coriolis decoupling strength. The principal way to do this is
to diagonalize the Coriolis interaction together with the single-particle Hamiltonian.
However, this is also not an easily solvable problem because one needs to calculate
the Coriolis operator matrix elements in cylindrical coordinates. Another more di-
rect approach is to start by the following expression for the decoupling parameter a
(see for example [6])

a =
∑
Nj

c2Nj

(
j +

1
2

)
(−1)j−

1
2 . (7)
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It corresponds to a diagonalization of the deformed shell model Hamiltonian in the
basis of the spherical harmonic oscillator |NljΩ〉. Here cNj are the decomposition
coefficients of the single-particle wave function in the harmonic oscillator basis

F =
∑
Nj

cNj|NljΩ〉. (8)

The expression (7) is valid for Ω = K = 1/2. To make it useful in the case of
anisotropic oscillator basis (6) one needs to switch to the coefficients in the respec-
tive decomposition of the single-particle wave function

F =
∑
Nnz

cNnz |NnzΛΣ〉. (9)

By inserting the completeness condition for the harmonic oscillator functions∑
Nj

|NljΩ〉〈NljΩ| = 1 (10)

in (9) one has

F =
∑
Nnz

∑
Nj

〈NljΩ|NnzΛΣ〉cNnz |NljΩ〉

=
∑
Nnz

∑
Nj

CNljΩNnzΛΣ
cNnz |NljΩ〉, (11)

where CNljΩNnzΛΣ
are the overlap integrals connecting the spherical and anisotropic

harmonic oscillator basis functions. By comparing Eqs. (11) and (8) one finds the
relation

cNj =
∑
Nnz

CNljΩNnzΛΣ
cNnz . (12)

Since the coefficients cNnz are determined in the deformed harmonic oscillator for-
malism presented above, the coefficients cNj can be obtained through Eq. (12) after
calculating the overlap integrals. The Coriolis decoupling parameter can be subse-
quently calculated by inserting the result of (12) into Eq. (7). One should remark that
the above consideration would be useful for not very large deformations for which
a reasonable number of terms will be enough to determine the coefficients cNj in
(12). The application of the method of overlap integrals to calculate the Coriolis
decoupling interaction is the subject of forthcoming work.

In the present work we apply an approximative but more straightforward ap-
proach to estimate the strength of the Coriolis interaction by using the solution of
the deformed shell model problem in the stretched basis (6). It is based on the possi-
bility to establish a correspondence between the spherical and anisotropic harmonic
oscillator levels contributing to the forming of the physical wave function in a given
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Figure 3. Schematic correspondence between levels-degeneracies of the deformed harmonic
oscillator and spherical harmonic oscillator with spin-orbit interaction for N = 3.

major shell N . So, we notice that the states of the anisotropic harmonic oscillator
with given N have the same-fold splitting as the levels of the spherical harmonic os-
cillator with spin orbit interaction and the same N . Furthermore, the respective sub-
sets of states are characterized with the same numbers for the level-degeneracy. To
clarify this statement we remark that the degeneracy of the states in the anisotropic
harmonic oscillator is given by

degen(nz) = 2(N − nz + 1), (13)

while that for the states of the spherical harmonic oscillator with spin-orbit interac-
tion is

degen(j) = 2j + 1. (14)

For example consider N = 3. The anisotropic oscillator subset contains 4 states
characterized by

nz = 0, degen = 8 nz = 1, degen = 6 nz = 2, degen = 4 nz = 3, degen = 2.

For the spherical oscillator set one has

p1/2, degen = 2 p3/2, degen = 4 f5/2, degen = 6 f7/2, degen = 8.

The above example is illustrated schematically in Fig. 3. It is seen that the same
set of partition numbers (2, 4, 6, 8) characterizes both oscillator schemes. We sup-
pose that if a given anisotropic oscillator level accommodates a given number of
particles, then the same number of particles should be accommodated in the corre-
sponding level of the spherical oscillator. Thus we assume the following relation

2j + 1 = 2(N − nz + 1). (15)
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This relation provides a correspondence between the spherical oscillator j-orbitals
and the anisotropic oscillator states nz which contribute to the construction of the
physical wave functions in the spherical and stretched bases, respectively. One
should however have in mind that such a correspondence does not mean a mapping
of both bases onto each other. It is only a relation between two quantum numbers
of different bases providing the same level-degeneracy structure of the spectrum.
Having this remark in mind one can introduce in the deformed shell model problem
an analogue of the quantum number j as a function of the stretched-basis quantum
number nz

j → j(N,nz) = N − nz +
1
2
. (16)

Using the above correspondence one can relate the spherical oscillator decomposi-
tion coefficients cNj of the single-particle wave function to the “stretched” coeffi-
cients cNnz . Assuming a weak mixing of the different major shells, N , we consider
c2Nnz

≈ c2Nc
2
nz

, where c2N and c2nz
are the decomposition coefficients of the wave

function in the quantum numbers N and nz , respectively. The coefficients c2N and
c2nz

are obtained on the output of the deformed shell model code [4]. Then using
Eq. (7) one can introduce the following expression for the Coriolis decoupling fac-
tor in the stretched basis

adsm =
Nmax∑
N=0

N∑
nz=0

c2Nc
2
nz

(
j(N,nz) +

1
2

)
(−1)j(N,nz)− 1

2 . (17)

We applied Eq. (17) with the use of the deformed shell model calculations to
estimate the quantity adsm in the nuclei 223Ra and 239Pu. For each nucleus we made
the calculations for several alternative sets of deformation parameters β2 and β3. In
239Pu the considered deformation parameters are taken from available experimen-
tal estimations. In 223Ra only β2 was known from an experimental estimation [7]
while for β3 we took several “testing” values. Calculations for the Coriolis decou-
pling factor (17) were performed only for the cases when the angular momentum
projection Ωdsm of the odd particle is obtained equal to 1/2.

The results of calculations are shown in Table 1. The respective values of the
decoupling parameter from the coherent quadrupole-octupole model of sec. 2, de-
noted by aqoc, are also given for comparison. The boxed numbers correspond to the
cases of a closer consistence between the results of the deformed shell model and
coherent quadrupole–octupole model calculations. We see that most of the exam-
ined pairs (β2, β3) in 239Pu predict Ωdsm = 1/2 and thus allow the calculation of
adsm. The obtained adsm- values vary in physically reasonable limits from −1.3 to
−0.4. The closest values of both model factors adsm = −0.43 and aqoc = −0.3
at β2 = 0.227 and β3 = 0.091 indicate the physical relevance of this deformation
region for the nucleus 239Pu. In 223Ra the calculations outline a deformation region
including β2 = 0.192 and β3 = 0.01 where both model calculations are consistent.

The obtained results are preliminary and just provide a test for the way in which
both microscopic and collective models can be applied to a consistent study of the
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Table 1. Coriolis decoupling factor adsm, Eq. (17), from deformed shell model calculations
for 223Ra and 239Pu at different sets of deformation parameters. The values aqoc of the de-
coupling factor from the coherent quadrupole-octupole model are given in the last column for
comparison. Ωdsm is the third angular momentum projection of the odd particle obtained by
the deformed shell model.

Nucl. β2 Ref. β3 Ref. Ωdsm adsm aqoc
239Pu 0.286 [7] 0.091 [8] 1/2 −1.30 −0.3

0.370 [9] 0.091 [8] 7/2 – −0.3
0.227 [3] 0.091 [8] 1/2 −0.43 −0.3

0.312 [9] 0.091 [8] 5/2 – −0.3
0.213 [9] 0.091 [8] 1/2 −0.56 −0.3
0.293 [9] 0.091 [8] 1/2 −1.92 −0.3
0.204 [9] 0.091 [8] 1/2 −0.6 −0.3

223Ra 0.192 [7] 0.150 [test1] 3/2 – 0.122
0.192 [7] 0.100 [test2] 5/2 – 0.122
0.192 [7] 0.050 [test3] 5/2 – 0.122
0.192 [7] 0.010 [test4] 1/2 0.264 0.122

interaction between single-particle and collective motions in odd-mass nuclei. Cer-
tainly, a number of further calculations has to be done including other nuclei and
regions in order to make a definite conclusion about such a possibility. This is a
subject of forthcoming work.

4 Summary

In summary, starting by the analysis of Coriolis interaction effects in odd-mass nu-
clei within the framework of the collective model of coherent quadrupole-octupole
motion, we outlined several ways in which the formalism of the deformed shell
model can be involved in the study. The most general way appears to be based on
the direct diagonalization of the Coriolis interaction in stretched coordinates. As a
more straightforward way we pointed out the application of overlap integrals be-
tween deformed and spherical oscillator functions allowing one to use the known
analytic expression for the Coriolis term in the spherical basis. We suggested an
even more direct way to use this expression by assuming a correspondence between
the spherical and deformed oscillator states obeying equal degeneracies. The test of
this approach on the nuclei 223Ra and 239Pu provides reasonable estimations for the
Coriolis decoupling parameter and moreover shows a consistency with the analysis
in the collective model. The obtained results indicate the possibility of further con-
sistent studies of the interaction between single-particle and collective degrees of
freedom in nuclei.
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