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Abstract. Time-odd densities constitute an important part of the Skyrme functional as they
restore its Galilean invariance violated by the effective-mass and spin-orbital terms. These
densities do not contribute to ground state properties of even-even nuclei but may be impor-
tant for the description of nuclear dynamics. As a particular case, we explore the influence of
the time-odd current density �j on E1, E2 and E3 giant resonances in 150Nd. The analysis is
done within the separable random-phase-approximation (SRPA) method with Skyrme forces
SkT6, SkM*, SLy6, and SkI3. We examine relation of �j to the effective masses and relevant
parameters of the Skyrme functional and demonstrate strong influence of the current on the
resonance properties for the forces with effective masses m∗/m < 1. The effect is fully de-
termined by the force and essentially different for isoscalar (T=0) and isovector (T=1) cases.
At the same time, it almost does not depend on the resonance multipolarity.

1 Introduction

Skyrme forces [1, 2] are widely used for description of diverse properties of atomic
nuclei, in particular of nuclear dynamics (see, for recent reviews [3, 4]). However,
even some principle features of these forces are not yet well clarified and need fur-
ther analysis. In particular this concerns the role of the time-odd densities in the
Skyrme functional. These densities are known to restore Galilean invariance of the
functional, hence their fundamental role [5,6]. Time-odd densities do not contribute
to the static ground-state mean field of even-even nuclei but can affect the dynamics.
The latter point is explored in the present paper.

We will outline time-odd densities in general and then concentrate on the role of
the current density�j in description of E1(T=1), E2(T=0,1) and E3(T=0,1) giant res-
onances (GR). The calculations are performed within the self-consistent separable
RPA (SRPA) method [7–11] recently derived by our group. Due to factorization of
the residual interaction, SRPA needs only a modest computational effort and so is
quite effective for systematic exploration of complex nuclei. The method treats both
spherical and deformed nuclei. It is self-consistent and does not need additional
parameters. Due to the effective self-consistent procedure, SRPA demonstrate the
accuracy of most involved methods. What is important for our aims, the method
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takes into account the contribution to the residual interaction of both time-even and
time-odd densities. Coulomb contribution and pairing particle-particle channel are
also included.

First systematic exploration of the impact of the current density to E1(T=1) and
E2(T=0) GR was commenced in [10, 12]. Then the study was enlarged for a wider
set of Skyrme forces and applied to a chain of Nd isotopes [13]. It was shown that
�j-impact is generally strong and fully determined by the isoscalar and isovector
parameters B0 and B1 of the Skyrme forces, responsible for the effective masses.
The classification of the Skyrme forces into 3 groups, depending on the magnitude
and sign of B1, was proposed. It was demonstrated that the current impact does
not depend on the shape and neutron number of the isotope, i.e. is the same for
standard and exotic nuclei. This opens a possibility to explore the time-odd effects
for standard nuclei and then transfer the results to exotic areas.

In the present paper we will demonstrate similarity of �j-impact for GR of dif-
ferent multipolarity λ. This finding is an additional important argument that contri-
bution of the current density to Eλ GR is indeed mainly determined by the Skyrme
force and insensitive to most of the nuclear and mode features.

2 Time-odd densities

2.1 General properties

The Skyrme functional [1] in the form [2, 5, 6, 14]

E =
∫

d�r(Hkin + HC(ρp) + Hpair(χq) + HSk(ρq, τq, �sq,�jq, ��q, �Tq) , (1)

includes kinetic, Coulomb, pairing and Skyrme terms respectively. Expressions for
the first three terms are done elsewhere [8, 11, 12, 14]. The Skyrme part reads
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It involves time-even (nucleon ρq, kinetic-energy τq , and spin-orbital ��q) and time-
odd (current �jq , spin �sq, and vector kinetic-energy �Tq) densities, where q denotes
protons and neutrons. The total densities (like j = jp + jn) are given in (2) without
the index.
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Both time-even and time-odd densities follow from the original Skyrme forces
[1]. As was mentioned above, time-odd densities restore Galilean invariance of the
functional, violated by velocity-dependent time-even densities τq and �q [5, 6]. So
time-odd densities enter the functional only in the specific combinations with their
time-even counterparts and do not lead to any new parameters. The latter is espe-
cially useful for even-even nuclei where Skyrme parameters can be fixed for the
ground state by implementation of the time-even densities alone and then applied to
nuclear dynamics involving time-odd densities as well.

The total set of six densities can be treated as the basic densities (ρq and �sq),
their momenta (�jq and ��q) and kinetic energies (τq and �Tq) [5, 13]. Such presenta-
tion illustrates physical sense of the densities in terms of hydrodynamics. Besides it
allows to interpret the Skyrme functional as some kind of the gradient expansion of
the basic densities up to their second derivatives . Such expansion is reasonable for
non-uniform densities, which is the case for �sq and ρq at the nuclear boundary [3].

2.2 Current density

Between time-odd densities, the current is most important for electric GR. Indeed,
the spin density �sq is mainly relevant for magnetic modes and does not influence
electric GR [10, 12]. The density �Tq can also be neglected as its supplement �2

q is
omitted in most of the Skyrme forces.

Contribution of �jq to the residual interaction is driven by the variation [8, 10]

δ2E

δ�jq′ (�r′)δ�jq(�r)
= 2[−b1 + b′1δq,q′ ]δ(�r

′ − �r) (3)

which is fully determined by the terms ∼ b1, b
′
1 in the functional (2). In these terms,

the current density adjoins the values ρτ and ρqτq responsible for the effective
masses. Hence, one may expect the correlation between effective masses and �jq
in the GR dynamics.

To analyze this correlation, it is convenient to express the terms ∼ b1, b
′
1 through

the isoscalar and isovector densities ρ0 = ρn + ρp and ρ1 = ρn − ρp (the same for
τ and �j). Then the sum of the these terms is transformed to the form [4]

B0(ρ0τ0 − j2
0) −B1(ρ1τ1 − j2

1 ) (4)

where isoscalar and isovector contributions are decoupled and

B0 = b1 − b′1/2, B1 = b′1/2 . (5)

For the symmetric nuclear matter, the isoscalar effective mass m∗/m and their
isovector counterpart, the sum-rule enhancement factor κ = (m∗

1/m)−1 − 1 (where
m∗

1/m is the isovector effective mass) are expressed via the new parameters as

(
m∗

m
)−1 = 1 +

2m
�2

ρ̄B0, κ =
2m
�2

ρ̄(B0 + B1) (6)
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Table 1. Nuclear matter and deformation values for the Skyrme forces under consideration.
The table represents the isoscalar (parameter B0 and effective mass m∗

0/m) and isovector
(parameter B1, sum rule enhancement factor κ, and effective mass m∗

1/m = 1/(1 + κ))
values, as well as the cartesian quadrupole moment Q2 in 150Nd. The experimental value of
Q2 are taken from [15].

Forces B0 m∗
0/m B1 κ m∗

1/m Q2

[MeV fm5] [MeV fm5] [b]
SkT6 0 1.00 0 0 1.00 6.0
SkM∗ 34.7 0.789 34.1 0.531 0.653 6.2
SLy6 58.6 0.690 -26.0 0.250 0.800 5.8
SkI3 96.3 0.577 -64.0 0.246 0.802 5.9
exp. 5.3

where m is the bare nucleon mass and ρ̄ is the density of the symmetric nuclear
matter. Table 1 lists values (5) and (6) for the Skyrme forces used at the paper.

The velocity- and spin-dependent densities in the Skyrme functional should in-
fluence energy-weighted sum rules (EWSR) for electric GR [16, 17]. The most es-
sential contributions are provided by the densities τ and�j [17]. The former results in
the effective mass. However, for isoscalar modes the τ and�j contributions to EWSR
fully compensate each other [17]. So, if we take �j into account, then EWSR(T=0)
again acquires the bare mass m and becomes

EWSR(T = 0, λ > 1) =
(�e)2

8πm
λ(2λ + 1)2A < r2λ−2 >A . (7)

The compensation between τ and �j contributions is not complete for isovector
modes [17] and so EWSR(T=1, λ ≥ 1) retains the effective mass:

EWSR(T = 1, λ = 1) =
(�e)2

8πm∗
1

9
NZ

A
, (8)

EWSR(T = 1, λ > 1) =
(�e)2

8πm∗
1

λ(2λ + 1)2Z < r2λ−2 >Z . (9)

For electric modes, contributions of spin-dependent densities ��, �s and �T to
EWSR are usually neglected. This seems to be reasonable for �s. However, one
should be careful with �� and �T . Our calculations show that contribution of �� to
EWSR can be noticeable for the forces with large Skyrme parameters in the terms
involving ��. In our study this is SkI3. For this force, removal of �� from both mean
field and residual interaction leads to increasing EWSR for E1(T=1) by 7-8%. Hence
the same change in exhausting the estimation (8). The similar effect takes place
for EWSR of other GR. However, their estimations (7) and (9) include the factors
< r2λ−2 >A and < r2λ−2 >Z which are also affected by the removal of ��. As a
result, �� does not nearly influence exhausting (7) and (9). In general, �T -contribution
can be significant for the forces with �2

q term in the Skyrme functional (the case of

SkT6). In the present study we omit the term �2
q in SkT6 and so �T as well.
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3 Calculation Scheme

The study was performed with the representative set of four Skyrme forces (SkT6
[18], SkM* [19], SLy6 [20], and SkI3 [21]) for the deformed nucleus 150Nd. Isovec-
tor and isoscalar characteristics of these forces are exhibited in Table 1. The forces
somewhat overestimate the calculated moment of 150Nd. However, this nucleus is
rather soft and one hardly may expect here precise agreement with the experiment.
In any case, this modest overestimation is irrelevant for our study.

The calculations were done within the SRPA approach [7–11] in the approxi-
mation of 5 input operators of a different radial dependence. Four operators were
chosen following the prescription [8] and the fifth operator rλ+2Yλ+2,μ was added
to take into account the multipole mixing of excitations with the same projection μ
and space parity π. As was shown in our previous studies [8, 10, 12], such choice
of the input operators makes the separable residual interaction sensitive to both sur-
face and interior dynamics. Hence high accuracy of the calculations. In this paper,
4Nop = 20 separable terms were used, where Nop = 5 is number of the input oper-
ators and factor 4 takes into account two options in isospin and time-parity. It worth
noting that already two input operators are usually enough for the robust description
of electric GR, even in deformed nuclei [10, 12]. The present set of input operators
is even more safe.

GR were computed as the energy-weighted strength functions

S(Eλμ;ω) =
∑
ν

ωνM
2
λμνζ(ω − ων) (10)

smoothed by the Lorentz function ζ(ω−ων) = Δ/[2π((ω−ων)2 + (Δ/2)2)] with
the averaging parameter Δ=2 MeV (such averaging was found to be optimal for
the comparison with experiment and simulation of various smoothing factors). Here
Mλμν is the matrix element of Eλμ transition from the ground state to the RPA
state |ν >, ων is the RPA eigen-energy. The transition operator is

M̂(λμ) = eeffn

N∑
i=1

(rλYλμ)i + eeffp

Z∑
i=1

(rλYλμ)i (11)

where eeffn and eeffp are effective charges. They are (-Z/A, N/A) for E1(T=1), (1,1)
for E2,E3(T=0), (1,-1) for E2,E3(T=1), and (0,1) for the proton response. We di-
rectly compute the strength function (10) and hence fully avoid determination of the
numerous RPA eigen-states. This additionally reduces the computation time. As a
result, SRPA calculations of one GR at a familiar laptop take less than one hour, as
compared to weeks in the case of full RPA methods [22].

A large configuration space is used. It involves 247 proton and 307 neutron
single-particle levels ranging from the bottom of the potential well up to ∼ +20
MeV. All two-quasiparticle configurations for E1, E2 and E3 excitations up to the
energy ∼ 65 MeV are taken into account. The EWSR (7), (8) and (9) are exhausted
by more than 90% for E1 and E2 and 80% for E3.
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4 Results and Discussion

Results of the SRPA calculations are presented in Figs. 1-3. In Fig. 1 the resonances
E1(T=1) and E2(T=0,1) in 150Nd are exhibited for the set of four Skyrme forces.
The quadrupole resonance is computed for the proton transition operator (eeffn =
0, eeffp = 1) and so includes both T=0 and T=1 branches. Right panels of the
figure show, that except of SkT6, all the forces overestimate the E2(T=0) energy and
the resulting upshift grows from SkM* to SkI3, i.e. with decreasing the isoscalar
effective mass m∗/m of the forces. This trend agrees with the well known result
that E2(T=0) GR prefers large m∗/m and so, the bigger m∗/m, the better E2(T=0)
description.
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Figure 1. E1(T=1) and E2(T=0,1) giant resonances in 150Nd, calculated with the Skyrme
forces SkT6, SkM∗, SLy6 and SkI3 for the cases with (solid curve) and without (dotted
curve) contribution of the time-odd current. The strength is smoothed by the Lorentz weight
with the averaging Δ=2 MeV. The experimental data for E1(T=1) [23–25] are depicted by
triangles. The empirical estimations ω(E2, T = 0) = 62A−1/3 MeV and ω(E2, T = 1) =
130A−1/3 MeV for E2(T=0) and E2(T=1) resonance energies are marked the arrows.

As is seen from Fig. 1, the contribution of the current �j downshifts the E2(T=0)
energy for all the forces, except of SkT6, thus improving agreement with the es-
timation. The less m∗/m, the larger the current correction. For SkI3 this correc-
tion achieves an impressive value of ∼ 2 MeV. The correlation between the �j-
contribution and m∗/m is explained by that both effects originate from the same
isoscalar part ∼ B0 of the term (4) in the Skyrme functional. In fact both effects are
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determined by the isoscalar parameter B0. This parameter systematically increases
from SkT6 to SkI3, hence the trends. For SkT6 force, B0 = 0 and so we have
m∗ = m and vanishing the current contribution.

The situation with isovector E1 and E2 resonances is more complicated. It is
seen from the left panels, that all the forces give in general acceptable agreement
with the experiment for E1(T=1), though there are some visible deviations. The
best agreement takes place for SLy6. This force has been fitted by the properties
of asymmetric nuclear matter, hence good reproduction of isovector features. The
other forces give noticeable disagreements: downshift and narrowing the resonance
for SkT6 and SkI3 and an artificial right shoulder for SkM* (with �j-contribution).

What is remarkable, unlike the E2(T=0) case, the�j-impact for E1 has a different
sign, depending on the force. Namely, the resonance energy is upshifted for SkM*
and downshifted for SLy6 and SkI3. For SkT6 we again have a zero effect. Like for
E2(T=0), these results are also driven by the term (4) but now by its isovector part
∼ B1. Indeed�j-impact is absent for SkT6 with B1 = 0, gives upshift for SkM* with
B1 > 0 and leads to the downshift for SLy6 and SkI3 with B1 < 0. Even magnitude
of the shift correlates with the value of B1 (see Table 1 for the comparison).
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Figure 2. Isoscalar (left panels) and isovector (right panels) E2 giant resonances in 150Nd,
calculated with the Skyrme force SLy6 for the cases with (solid curve) and without (dotted
curve) contribution of the time-odd current. The strength is smoothed by the Lorentz weight
with the averaging Δ=2 MeV. The empirical estimations ω(E2, T = 0) = 62A−1/3 MeV
and ω(E2, T = 1) = 130A−1/3 MeV for the resonance energies are marked the arrows.
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Altogether this means that effective masses and �j-impact for E2(T=0) and
E1(T=1) GR are related and determined by the force parameters B0 and B1. This
conclusion agrees with the recent systematic exploration [13] involving 8 Skyrme
forces and chain of 13 Nd isotopes. There the Skyrme forces were tentatively sepa-
rated into 3 groups with B1 ∼ 0, B1 > 0, and B1 < 0. Following this classification,
the forces SkT6, SkM* and SLy6,SkI3 should belong to the groups I, II and III, re-
spectively. As is seen from Fig. 1,�j-impact in E1(T=1) can be negligible (I), harmful
(II) and useful (III).

Right panels of Fig. 1 show that E2(T=1) resonance exhibits the same pecu-
liarities as his dipole counterpart E1(T=1). In particular, its current impact is also
determined by the isovector parameter B1. So one may conclude that�j-impact does
not depend on the GR multipolarity. Instead, it is mainly driven by the Skyrme force.
This analysis remains to be valid for Fig. 2 where E2(T=0) and E2(T=1) GR are de-
picted separately. Moreover, we see the similar behavior for E3(T=0) and E3(T=1)
resonances exhibited in Fig. 3.
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Figure 3. The same as in Fig. 2 for E3 giant resonances. The empirical estimations for the
energies of isoscalar LEOR, ω(E3, T = 0) = 30A−1/3 MeV, and HEOR, ω(E3, T = 1) =
(90 ÷ 120)A−1/3 MeV, are marked by the arrow and horizontal line, respectively.

The latter figure devotes a bit closer inspection. It is seen that both E3(T=0)
and E3(T=1) are split into two branches, low-energy octupole resonance (LEOR)
and high-energy octupole resonance (HEOR). These branches are determined by
ΔN = 1 and ΔN = 3 particle-hole transitions, respectively, where N is the
principle quantum shell number. Fig. 3 shows that we rather well describe the
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isoscalar LEOR. For the HEOR(T=0), the experimental data exhibit a wide dis-
persion, depending on the reaction and details of the experiment. For example, the
resonance energy changes from 93A−1/3 MeV (recent (α, α′) experiment [26])
to 110 ÷ 120A−1/3 MeV (systematic analysis of experimental data [27]). The
corresponding uncertainty interval is marked in Fig. 3. It is seen that quality of
HEOR(T=0) description is more or less the same as for E2(T=0). Namely, the
HEOR(T=0) energy is somewhat overestimated and the deviation grows from SkT6
to SkI3. The right plots of Fig. 3 show that isovector LEOR and HEOR lie higher
than their isoscalar counterparts. The experimental data for these GR are even more
uncertain and so are skipped.

5 Conclusions

The influence of time-odd densities on multipole electric giant resonances is dis-
cussed and examined for the particular case of the current density �j. The calcula-
tions were done for E1(T=1), E2(T=0,1) and E3(T=0,1) resonances in the deformed
nucleus 150Nd for the Skyrme forces SkT6, SkM*, SLy6 and SkI3. The current con-
tribution was found to be generally strong and fully determined by the isoscalar and
isovector parameters B0 and B1 of the Skyrme forces, responsible for the effective
masses. The contribution demonstrates essentially different behaviour for isoscalar
and isovector GR but is insensitive to GR multipolarity.
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