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Abstract. Wobbling motion of a nucleus is induced by triaxial deformation. Quantized wob-
bling motion, that is, wobbling phonon, is expected to show a harmonic spectrum according
to the Bohr-Mottelson model. However, observed wobbling phonon spectrum shows a strong
anharmonicity. In this paper, the sources for this anharmonicity are discussed through several
models.

1 Introduction

It is no doubt that a nucleus is a complicated many-body system, but its collective
modes can be sometimes understood in a surprisingly simple manner. An exam-
ple is seen in a sequence of the low-lying excitations connected through strong E2
transitions. This spectrum corresponds to nuclear collective rotation, which can be
approximated as a uniform one-dimensional rotation of a “rigid” body with an axial
symmetry.

Nuclear shape plays an important role in providing various “flavours” to nuclear
rotations. In studying rotational motion of a nucleus, it is convenient to classify
nuclear deformation with multipolarity. For a deformed shape, the nuclear radius
R(θφ) is orientation-dependent and thus expressed as

R(θφ) = R0

(
1 +

∑
lm

αlmYlm(θφ)

)
, (1)

where φ and θ are the azimuthal and polar angles in the intrinsic coordinate frame,
respectively. The average nuclear radius R0 is given as R0 = 1.2A1/3 (fm) with A
being the mass number. The leading order is the quadrupole (l = 2), and a truncation
at this order brings a five-dimensional parameter space spanned by the following
deformation parameters: α20, α2±1, α2±2.

These five-dimensional parameter space can be decomposed into the 3 + 2 sub-
spaces, that is, the three Euler angles (θ1, θ2, θ3) and the two Hill-Wheeler co-
ordinates (β, γ). The Euler angles describe collective rotation of the quadrupole-
deformed nucleus, while the Hill-Wheeler coordinates correspond to the intrinsic
deformation parameters in the rotating frame. Parameters β and γ carry information
on elongation and triaxiality of the deformed nucleus, respectively.
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2 Triaxial deformation and Wobbling motion

In this paper, we would like to focus on triaxial quadrupole deformation (or γ de-
formation) and its high-spin states. It was demonstrated by Bohr and Mottelson
that triaxial deformation can induce nuclear wobbling motion [1]. With a rigid-rotor
model, they incorporated triaxiality in the following Hamiltonian.

H =
3∑
i=1

I2
i

2Ii
, (2)

where moment of inertia is set as

I1 > I2 > I3. (3)

For given energy, the above equation gives an ellipsoid called the Binet ellip-
soid [2]. At the same time, the angular momentum conservation gives a sphere,∑3

i=1 I
2
i = I2. Thus the motion of the angular momentum vector is determined as

an intersection of the Binet ellipsoid and the angular momentum sphere. For a tri-
axial shape, the intersection shows a deviation from a circular motion (precession).
This deviation is in fact a wobbling motion in the classical mechanics, where all the
three components of the angular momentum vector can be specified.

In quantum mechanics, the angular momentum algebra in the intrinsic frame
[Îi, Îj ] = −i�Îk (i, j, k cyclic) does not allow the simultaneous specification of the
three components. This quantum effect also brings an orientational fluctuation. In
case of triaxiality, only the total angular momentum is conserved. That is, [Ĥ, Î2] =
0, where Î2 =

∑3
k=1 Î

2
k , while [Ĥ, Îi] = i

2

(
1
Ij

− 1
Ik

)
(2IjIk + iIj) �= 0. In-

evitably, a quantized wobbling state is written as a superposition,

|Ψ Iwbl〉 =
∑
K

CK |IK〉, (4)

where the basis in the right-hand side are obtained from the eigenvalue equations

Î1|IK〉 = K|IK〉 (5)

Î2|IK〉 = I(I + 1)|IK〉. (6)

It is known that the summation for K needs to be taken only for even (odd) K
for positive (negative) signature, which is a discrete symmetry with respect to a π
rotation around a principal axis of the triaxial rotor.

In the high-spin limit I >> 1, the rotational motion of a quantum triaxial rotor
can be well approximated to be a classical motion, that is, the rotation is near one-
dimensional and the quantum fluctuation causing the wobbling can be minimized.
This means that the distribution |CK |2 has a sharp peak around K = I . In this case,
the operator Î1 can be replaced with a C-number I as a good approximation, and the
Hamiltonian is then written as
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Ĥ =
I(I + 1)

2I1
+ Ĥwbl, (7)

where

Ĥwbl =
1
2

(
1
I2

− 1
I1

)
Î2
2 +

1
2

(
1
I3

− 1
I1

)
Î2
3 . (8)

The wobbling phonon operator a† ≡ 1√
I
(Î2 + iÎ3), is introduced here. Expanding

the Hamiltonian with this wobbling phonon operator gives rise to the so-called dan-
gerous terms such as a†a†. Similar to the Bogoliubov transformation in the BCS
theory, a proper canonical transformation b† = xa† − ya, where x and y are real
numbers to satisfy x2 − y2 = 1, can “diagonalize” (that is, eliminate the dangerous
terms) the Hamiltonian. With the number operator defined as n̂ = b†b, the wobbling
Hamiltonian can be finally expressed as

Ĥwbl = �ωwbl

(
n̂ +

1
2

)
, (9)

where the wobbling excitation energy is given as

�ωwbl =
I

I1

√
(I2 − I1)(I3 − I1)

I2I3
. (10)

In this way, the wobbling spectrum E(I, n) is characterized by two quantum num-
bers, that is, the total angular momentum I and the wobbling phonon number n.

3 Triaxiality as a dynamical variable

In the wobbling model, moment of inertia is treated as a constant. This means
that the Hill-Wheeler coordinates (β, γ) are just parameters to describe the static
quadrupole deformation. In a sense, the wobbling model assumes a nucleus to be a
rigid body with a static triaxial deformation.

As Rainwater [3], Bohr [4], Hill and Wheeler [5] suggested, nuclei can be also
regarded as a liquid drop, where the liquid is assumed to be incompressible and
its flow is supposed to be irrotational. When the velocity field is denoted as v, the
irrotational condition is given as ∇× v = 0. Using a basic vector analysis formula,
this equation implies an existence of the scalar field χ to satisfy an relation v =
−∇χ. The additional condition of incompressibility (∂ρ/∂t = 0 or equivalently
∇ · v = 0) brings a Laplace equation for χ, and the general solution with the
boundary condition can be expressed as

χ(r) =
∑
lm

R2−l
0

l
rlα̇lmYlm(θφ). (11)

The kinetic energy T =
∫
ρv2/2dV can be calculated with help of the scalar field

χ, and it is divided into two terms. That is, T = Tv + Tr, where
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Tr =
1
2

∑
k

Ikω
2
k (12)

Tv =
1
2
B2

(
β̇2 + β2γ̇2

)
. (13)

Here B2 = ρ0R
5
0/2 is a mass parameter and the dynamical moment of inertia is

given as

Ik = 4B2β
2 sin2

(
γ − 2π

3
k

)
. (14)

The kinetic energy Tr describes a contribution coming from a rotational mo-
tion. However, it is important to note that its moment of inertia depends upon β
and γ as dynamical variables, not mere parameters like in the wobbling model. As
the other kinetic term Tv indicates, the surface oscillation needs to be considered
through the β and γ degrees of freedom. Rotational motion and nuclear shape are
thus interwinded with each other to produce a complicated dynamics.

4 Microscopic gamma-soft rotor model

In the observed wobbling phonon spectrum, a strong anharmonicity was ob-
served [6, 7]. Some theoretical analyses were attempted [8, 9], but no clear answer
has been given to account for this unexpected feature in the wobbling spectrum.
Considering the previous irrotational-flow model, it seems important to treat the
gamma degree of freedom (γ) in addition to the wobbling degrees of freedom (θ, φ).

A simple microscopic model is presented here for the aim to take into account
the orientational and gamma degrees of freedom simultaneously, which I name
microscopic gamma-soft rotor model or m-GSR. This model is basically a micro-
scopic model based on the variational theory, in the spirit of the generator coordinate
method [5, 10]. The GCM ansatz is given as a superposition of Slater determinants
of deformed Nilsson single-particle states. That is, the ansatz is expressed as

|Ψ〉 =
∫

f(γθ)|HF(γθ)〉dγdθ, (15)

where the Slater-determinant |HF〉 is defined as

|HF(γθ)〉 =
N∏
i

c†i (γθ)|0〉. (16)

The deformed Nilsson states c†i (γθ)|0〉 are obtained through diagonalizing the
single-particle routhian

h(γθ) = h0 + hdef(γ;β) −Ω(cos θjx + sin θjz). (17)

The first term is the spherical Nilsson potential, where the oscillator frequency is
given as �ω = 41A−1/3 (MeV); the second term is the (quadrupole) deformed
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potential ; and the last part is the tilted (2D) cranking term. To concentrate on the
role of the triaxial degree of freedom, the elongation parameter β is fixed in the
present model. Also, the wobbling is confined in the x− z plane for the sake of the
simplicity.

The many-body Hamiltonian to be minimized is the following:

Ĥ = Ĥ0 − 1
2
κ

2∑
μ=−2

Q̂†
μQ̂μ, (18)

where H0 is the spherical Nilsson Hamiltonian and operator Qμ is the μ-th compo-
nent of the quadrupole operator. The second term corresponds to a two-body resid-
ual interaction. The pairing correlation is neglected in this model just for simplicity.
The variational equation

δ
〈Ψ |Ĥ |Ψ〉
〈Ψ |Ψ〉 = 0, (19)

is considered with the weight function f(γθ) as a variational function, and the Hill-
Wheeler equation is obtained as∫

dγ′dθ′ (H(γθ, γ′θ′) − EnN (γθ, γ′θ′)) fn(γ′θ′) = 0. (20)

The energy and norm overlap kernels are

H(γθ, γ′θ′) = 〈HF(γθ)|Ĥ |HF(γ′θ′)〉, (21)

N (γθ, γ′θ′) = 〈HF(γθ)|HF(γ′θ′)〉. (22)

The presence of the norm overlap kernels implies that the basis for the GCM, that is,
|HF(γθ)〉, are non-orthogonal basis. Because of this, the diagonalization of the Hill-
Wheeler equation needs a special care. In the present study, we employ a new set of
basis {uν} obtained from the diagonalization of the norm overlap kernel. Namely,∫

dγ′dθ′N (γθ, γ′θ′)uν(γ′θ′) = nνuν(γθ). (23)

Note that that the norm overlap kernel is a Hermitian in the parameter space (γ, θ),
so that the new basis un(γθ) forms an orthonormal basis. With this basis, the weight
function is expanded in such a manner of

f(γθ) =
∑

ν,nν 
=0

gν√
nν

uν(γθ). (24)

The expansion coefficients gν now correspond to new variational parameters. In
this representation, the Hill-Wheeler equation reduces to an ordinary eigenvalue
equation: ∑

ν

〈ν|Ĥ |ν′〉giν′ = Eigiν , (25)
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Figure 1. Gamma vibration spectrum at the no-cranked state (Ω = 0).

where a new GCM ansatz is given as

|ν〉 =
1√
nν

∫
uν(γθ)|HF(γθ)〉dγdθ. (26)

The matrix elements are calculated as

〈ν|Ĥ |ν′〉 =
∫ ∫ ∫ ∫

dγdγ′dθdθ′
u∗
ν√
nν

H(γθ, γ′θ′)
uν′√
nν′

(27)

5 Numerical results

The goal of our calculation is to demonstrate the strong anharmonicity seen in the
experimental data of the wobbling spectrum. The anharmonicity is seen already in
the second phonon state, which is roughly expressed as

|E(I, n = 2) − E(I, n = 1)|
|E(I, n = 1) − E(I, n = 0)| �

1
2
, (28)

where n denotes a wobbling phonon number.
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Figure 2. Gamma vibration spectrum of cranked states. Quantity Ω/ω means a ratio with
respect to the harmonic oscillator frequency. Angular momentum values attached to Ω/ω are
expectation values calculated only at γ = 0.

5.1 γ vibration

First of all, as a test calculation, only γ is taken as a dynamical variable (that is,
generator coordinate in the GCM), to carry out the GCM calculation. The result is
exhibited in Figure 1 for the no-cranked state (Ω = 0). The discrete lines in the
figure are the energy spectrum obtained through the GCM, while the dotted line
attached to the graph is the expectation value

E(γ) = 〈HF(γ)|Ĥ |HF(γ)〉 = H(γ, γ). (29)

In other words, this quantity is diagonal part of the energy overlap kernels.
The numerical results show a slight anharmonicity, particularly in higher excited

states. However, the lowest three levels maintain the harmonic structure to a good
extent.

As the cranking starts, the energy surface starts to evolve (see Figure 2). The
change is gradual up to Ω/ω = 0.1, where ω is the harmonic oscillator frequency.
However, beyond this point, the energy curves show abrupt changes, which are re-
sults of configuration changes. This configuration changes happen due to the Ω
cranking without a constraint on the total angular momentum, that is, 〈Ĵ1〉 = J .
Therefore, the GCM calculation, which superposes these states, has little meaning
without the constraint.
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Figure 3. (Left) Wobbling spectrum for γ = 40◦ and 〈Ĵ1〉 = 20�. (Right) The expectation
values for each angular momentum component. These calculations are made with the angular
momentum constraint in the GCM calculation.

Figure 4. (Left) Expectations values of the total energy and total spin as a function of θ,
without the angular momentum constraint. (Right) The expectation values for each angular
momentum component, without the constraint.

5.2 θ wobbling

From Figure 2, the cranked state with Ω/ω = 0.2 has a triaxial minimum at γ �
40◦. Picking up this solution, it is possible to construct the wobbling state (with the
fixed γ value).

Energy curve for θ, that is, E(θ; γ = 40◦) and the corresponding GCM spectrum
is displayed in Figure 3. Interestingly, the energy curve has a double-well structure,
and the corresponding GCM spectrum gives rise to a strong anharmonicity already.
The double-well potential in E(θ) implies an importance of tilted rotation. Tilted
rotation breaks the signature symmetry spontaneously, but the symmetry allows the
tilted solution |Ψ(θ)〉 to be degenerate with its counterpart produced by the signature
operation, that is, |Ψ(−θ)〉 = R̂i(π)|Ψ(θ)〉. Quantum mechanical restoration of the
symmetry thus happens through the quantum tunneling to allow the “wobbling”
coupling mode between these two tilted rotating states. This mechanism to cause
the anharmonicity was discussed by Matsuzaki and Ohtsubo [8]; and myself [9]. In
this sense, the previous models for the anharmonicity were confirmed to be correct
by the present microscopic model.
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However, the current microscopic result needs a caution before the final conclu-
sion is made, because due to a numerical difficulty to maintain the angular momen-
tum constraint, the present GCM calculation can use the Slater determinant only
up to θ � ±35◦. If the full range in θ is taken into account, the GCM result may
be different. Therefore, the result obtained here has to be regarded only as a pro-
visional result, unfortunately. I am developing the effective algorithm to enable the
full-range calculation at the moment.

In Figure 4, the cranking calculations without the angular momentum constraint
are presented. In the left panel, the total energy curve is plotted, but its shape is very
different from the one in Figure 3. There are several sudden jumps in the energy
curve in Figure 4, which are caused by the artificial configuration change due to the
loss of the constraint. As can be seen in the curve for the total angular momentum in
Figure 4, the expectation value of the total angular momentum changes significantly
away from the origin (θ = 0). Consequently, the intrinsic structures become differ-
ent and bring spurious structure changes. From this analysis, one can learn that the
Ω-cranking calculations without the angular momentum constraint are not trustwor-
thy, particularly in the tilted cranking calculations. Nevertheless, it is true that the
constrained calculation requires more numerical efforts, and I am developing a new
code to deal with this problem.

5.3 Full m-GSR calculations: γθ-GCM

Without the angular momentum constraint, the accuracy of the GCM calculation is
doubtful. Therefore, the analysis of the full microscopic gamma-soft rotor model
needs to wait for the progress in the code, which was mentioned above.

6 Conclusions

To understand the strong anharmonicity in the wobbling phonon spectrum, a micro-
scopic gamma-soft rotor model is proposed. The model deals with the orientational
fluctuation responsible for the wobbling degree of freedom (θ) as well as the surface
oscillation coming from the dynamical triaxial degree of freedom (γ). Some test cal-
culations were performed and it was found that the angular momentum constraint is
very important to make the GCM calculation accurate and meaningful.
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