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Abstract. We present a brief review of some static and dynamical properties of metal clus-
ters, addressing various dynamical regimes, from the linear to the non linear domain. We
emphasize relations with atomic nuclei and focus on cluster quantities which have counter-
parts in nuclei. We discuss the case of the optical response which provides a key tool of
analysis of the structure and shape of simple metal clusters. We also discuss emission proper-
ties of irradiated metal clusters and show kinetic energy spectra of emitted electrons as well
as angular distributions thereof.

This contribution is summarizing results presented in two previously published
papers (J. Navarro et al, Euro. Phys, J. A 30 (2006) 333 and P-G. Reinhard et al,
Int. J. Mod. Phys E 15 (2006) 1549).

1 Introduction

The scope of this contribution is a rapid survey of some static and dynamical prop-
erties of metal clusters emphasizing observables which can be related to similar
ones in nuclei. Both systems have indeed much in common. Both their structure
and dynamics are dominated by the behaviour of Fermion liquids: the protons and
neutrons in nuclei and the dense electron cloud in clusters. It is known since long
that Fermi liquids constitute one of the basic states of matter [1]. They are further-
more highly correlated systems which, however, never freeze out to a crystalline
state precisely due to the strong Fermi correlation. Nuclei and metal clusters have a
well defined saturation density with low compressibility which makes that the finite
drops share several key features. One can in particular cite the scaling of radius with
size (R ∝ N1/3), shell effects and corresponding deformation pattern [2, 3], what
concerns static properties. But there also exists similar dynamical features, such as
pronounced resonance excitations related to zero sound in homogeneous matter, the
giant resonances in nuclei and the surface plasmon in clusters [2–4]. Finally, one
can mention, fusion/fission [5] as a further aspect in the case of large amplitude
collective motion.
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In both systems (nuclei and metal clusters) the strong correlations can hardly
be dealt with in detail, so that effective energy-density functionals are employed for
self-consistent calculations of ground state and dynamics, see e.g. [6] for the elec-
trons in clusters, and [7] for nuclei. This short list of basic properties shows that
nuclei and metal clusters have much in common. But there are also several note-
worthy differences, for example concerning composition. Mind that while nuclei
are composed of particles of similar masses, metal clusters contain both electrons
and ions which induces the coexistence of very different time scales. It is thus most
interesting to discuss these systems in comparison.

We shall confine the present analysis to some basic structural and dynamical as-
pects focusing on quantities which exist in both systems. Most prominent and much
studied are the resonance modes. This concerns the Mie plasmon in the case of
clusters. We shall show that this mode brings a bunch of relevant information, espe-
cially for our understanding of structure and shape of metal clusters. These modes
can be accessed by photoabsorption measurements. They belong to small ampli-
tude oscillations (for a general overview on small oscillations in Fermion systems
see [4]). A survey treating resonance modes in nuclei, metal clusters, and liquid 3He
drops was also given in [8–11]. Dynamics will be addressed through the analysis of
electronic emission after laser irradiation. We shall mostly discuss photoelectron
spectroscopy which gives access to single electron level energies. Emitted electrons
can be analyzed both in terms of their energy and direction of emission. We shall
show examples of both observables. Before addressing these various points, as well
as briefly presenting the theoretical framework, we first give a quick survey of what
kind of observables can be attained in clusters.

2 Experimental signals from metal clusters

Metal clusters are usually formed in sources which produce a distribution of clusters
of various masses and temperatures [12]. A direct access to well defined masses is
thus not easy which makes the handling of clusters delicate. The proper tuning of
the cluster source thus constitutes a key step in cluster physics. The quality of source
handling thus sets limitations to what is finally accessible on a given cluster. For sake
of simplicity in the forthcoming discussions we shall nevertheless consider here that
this prerequisite is properly fulfilled, namely that one has at hand, for experiments,
a well defined set of clusters of a given mass. We shall furthermore assume that the
cluster temperature is reasonably low to avoid questions linked to solid-liquid phase
transitions. Such a situation is fortunately nowadays attained in many experiments.

Lasers provide a basic tool for investigations of clusters. The laser field ionizes
the cluster, which allows an easy electromagnetic handling of the thus formed clus-
ter ion. The response of the cluster may involve several signals, depending on the
degree of ionization, as sketched in figure 1. Basic signals are provided by photons,
electrons and clusters themselves. Analysis in terms of photon energies (photoab-
sorption cross sections) provide the so called optical response, which is the cluster
analogon of giant resonances in nuclei. As we shall see the optical response provides



Small fermionic systems 285

L
as

er
pol

ar
iz

at
io

n

Electron energy

Photoelectrons

Y
ie

ld

d /dE

( )

Photoabsorption
Y

ie
ld

Photon energy Mass spectrum

Y
ie

ld

Ion « mass » (m/q)

h

electrons

cluster

Optical response

Deformations

Abundances

Magic numbers

Figure 1. Schematic illustration of basic observables accessible in standard experiments on
metal clusters. Measurements after a cluster irradiation may involve photons (left panel with
a photoabsorption cross section σ(ω), as a function of laser frequency ω), electrons (upper
right panel with a photoelectron spectrum, which is a differential cross section as a function
of electron kinetic energy dσ/dE) or clusters themselves (right bottom panel with a mass
spectrum, which is an averaged cross section σ). All these quantities provide complementing
information on cluster properties. See also text for details.

a key tool of analysis of cluster structure and shapes. Electrons emitted after laser
irradiation (photoelectrons) can be analyzed with various degrees of sophistication.
The mere total number gives access to the net cluster charge which already provides
a basic indicator on the degree of violence of the interaction process. The measure-
ments of cluster mass spectra also bring interesting information especially in terms
of abundances and are thus of great use for identifying shell closure effects, as in the
nuclear case. The analysis of kinetic energies of emitted electrons provides a richer
indicator useful for both structure and dynamical questions. We shall discuss it in
some detail below.

3 Nuclei and metal clusters

3.1 More similar than different ?

Nuclei and the electron cloud of metal clusters are dense fermion systems exhibit-
ing strong Pauli correlations. To make this qualitative analogy more quantitative let
us briefly recall a few key characteristics of metal clusters (in relation to nuclei),
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concerning, in particular, dominant interactions, sizes, structure and dynamics. In
metal clusters, the Coulomb interaction plays the key role. The repulsive interaction
between electrons is compensated by the attraction to (positively charged) ions. It
is by the way interesting to note that in a neutral cluster, most of the binding ac-
tually results from the electronic exchange and correlation part of the interaction.
In nuclei, the binding is dominated by the short range nuclear interaction which is
generally larger than the Coulomb interaction. Still, the two systems furthermore ex-
hibit a similar ”saturating” behavior with radii scaling with the power 1/3 of the size
of the system. The proportionality factor is known in metal clusters as the Wigner
Seitz radius rs (characteristics of the material), denoted as r0 in the case of nuclei.
Each fermion thus occupies the same volume (4/3)πr3

s and the average density of
these systems is ρ ∼ 3/(4πr3

s) independent of the system size. The parameters
r0, rs thus play a key role in fixing the characteristic scales in these systems and we
can use them for comparison using properly scaled varaibles, as we shall see below.
For example, the typical distance between constituents amounts to about 1.5-2 rs.
The Fermi gas picture also provides a simple energy scale in terms of rs through
the Fermi energy εF = (�2/2m)k2

F (with kF = (3π2ρ)1/3 = (9π/4)1/3r−1
s and

m = mn,me).
Another interesting, and deeper, similarity concerns the validity of mean field in

both systems. The free nucleon-nucleon interaction is known to be strongly repul-
sive at short range [13], which makes a mean field theory a priori questionable. But
the strong Pauli correlations in nuclei significantly suppress low energy scattering.
This renormalizes, in a nuclear medium, the interaction to an effective one, follow-
ing the well known Brueckner picture. The short distance repulsion is then highly
suppressed and the effective nucleon-nucleon interaction smooth enough to justify a
mean field picture [13]. In nuclear physics the so called Skyrme interactions, which
integrate in an effective way, these Pauli correlation effects on a basically zero-range
bare interaction, have thus become a standard microscopic tool for decades, because
of their simplicity and because of the many successes they have allowed, at least for
stability valley nuclei, for a recent review see [7]. As can be seen from table 1 the
Skyrme interaction appears as a density functional, mostly local, non-locality being
usually assumed in terms of a gradient expansion.

A somewhat similar reasoning applies to metal clusters. The general atomic
problem is of course singular (due to the point charge of the atomic nucleus). How-
ever, only a limited number of valence electrons actually take part in the binding of
molecular systems or clusters. This is especially true in the case of simple metals, in
which the valence shell is well separated from core levels and remains usually little
bound. Valence electrons can thus easily be delocalized to form the rather ”soft”
bonds characteristics of metals. It should, by the way, be noted that this also allows
a proper (and simple) packaging of the effect of the core electrons into a so called
pseudo potential: this reduces the many-electron problem to the treatment of the
valence electrons only, in a reasonably smooth ionic background [12]. This again
provides a favourable situation for a mean field treatment. The success of the many
calculations based on Density Functional Theory (DFT), even in its simplest Local
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Density Approximation (LDA) version, constitutes a typical proof of the reliability
of the mean field approach.

Figure 2. The mean-field potentials for a Na cluster, a nucleus and an helium droplet, with 40
particles (neutrons only in the nuclear case). Natural units are used: lengths in units of rs and
potentials in units of εF .

In order to quantify this similarity of the mean-field treatments in nuclei and
metal clusters we present a comparison of how they look like in systems of compa-
rable ”sizes” in Figure 2. We have taken as example the test case of a Na40 cluster
and of the 78Sr nucleus(with 40 neutrons). The case of an helium droplet with 40
3He atoms (representing the third class of Fermi liquid droplets) is also shown for
completeness. The comparison is interesting in many respects. The first aspect to
be noted is that all three systems fit into one single figure, which means that they
have about the same scales when expressed in natural units. They indeed exhibit the
same spatial extension, a scale which is directly connected to the ”saturation scale”
given by r0,s. But of course some differences also show up, for example in the depth
of the potential wells and in the asymptotic behaviors. The depth of the cluster and
nucleus potential wells are in fact comparable while the helium droplet exhibits a
much more shallow potential well. This directly reflects the faintness of the interac-
tion between two He atoms. On the other hand, the helium droplet and the nucleus
share the same asymptotic behavior, typical of a system dominated by a relatively
short-range interaction. The cluster, in turn, exhibits a typical long-range Coulomb
behavior. Up to details, the comparison nevertheless shows an overall similarity be-
tween the various systems.
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Nuclei h[�] = −∇ �

m∗(r)
∇ + t0�+ t3�

1+σ + t12(∇�)2 +
∫ �p(r′)

|r−r′|dr
′ + ...

�
2

2m∗ = �
2

2m
+ α�

Clusters h[�] = − �
2

2m
Δ+

∫ �(r′)
|r−r′ |dr

′ + Uxc[�] + Uext(r, t)

Table 1. One-body Hamiltonian used in mean field calculations in nuclei (Skyrme like inter-
action), and metal clusters (DFT LDA) In nuclei the density ρ represents the neutron and/or
proton density, the latter entering the coulomb interaction alone (ρp). In clusters the density
is the electronic one. In the case of cluster electrons an important contribution comes from
the exchange correlation potential Uxc[ρ] which can be treated in the simplest LDA approxi-
mation. The external potential Uext(r, t) typically refers to the fields as generated by ions or
a possible external field (laser, by passing ion...). In the case nuclei one has to introduce an
effective mass m∗ as indicated, which again depends on the density.

3.2 More on the theory of nuclei and metal clusters

In the immense majority of practical cases the mean-field calculations based on
the one-body hamiltonians presented in table 1 are done at quantum level (that
was the case of the calulations performed in Figure 2). Each particle (nucleon,
electron) is then attributed a one particle wavefunction φi(r), from which one de-
duces the single particle density matrix ρ̂(r, r′) and the local one-body density
#(r) = ρ̂(r, r) =

∑
i |φi(r)|2 (where the summation runs over all particles). The

one-body wavefunctions then follow an effective Schrödinger equation

i �
∂|ϕi >
∂t

= h[#(r)]|ϕi > (1)

with an effective single-particle Hamiltonian h expressed as a functional of the den-
sity ρ(r), as given in table 1 for nuclei and metal clusters. This mean field equation
can be recast in the well known equivalent matrix form

i �ρ̂ = [h, ρ̂] . (2)

There also exist semi-classical approximations to this quantum scheme, which
can be ”formally” obtained by transforming the density operator ρ̂ into a one-body
phase space distribution f(r,p, t), which becomes the basic ingredient, and the
commutator into Poisson brackets:

ρ̂(r, r′) −→ f(r,p, t)
[., .] −→ {., .} (3)

This leads to the well known Vlasov equation
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∂f

∂t
= {h, f} (4)

The one-body Hamiltonian has the same expression in terms of the density #(r) as
in the quantal form, but the density is now computed from the phase space density
as

#(r, t) =
∫

d3pf(r,p, t) (5)

The major interest of the Vlasov approach is that it can be (relatively easily) ex-
tended to account for dynamical correlations. Particle-particle scattering effects can
indeed be included as a Markovian collision term for the phase space distribution f .
This was worked out in great detail in nuclear physics applications [14] and it was
also extended to the cluster case. In both cases (nuclei, metal clusters) one ends up
with the so called VUU (Vlasov Uehling Ulhenbeck) equation

∂f

∂t
+

p
m

∂f

∂r
− ∂V

∂r
∂f

∂p
= IUU (r,p, t) (6)

with the collision term

IUU =
∫

d3p2dΩ

(2π�)3
dσ

dΩ
|v12|{f1f2(1−f3/2)(1−f4/2))−f3f4(1−f1/2)(1−f2/2))}

(7)
where v12 is the relative velocity of the colliding particles 1 and 2. The differential
cross section dσ/dΩ (function of the scattering angleΩ) is evaluated in the center of
mass frame of the two colliding particles. Indices 3 and 4 label the momenta of the
two particles after an elementary collision process and we use the standard abbre-
viation fi = f(r,pi, t). The collision is supposed elastic (conservation of energy,
of total momentum). Pauli blocking factors (1 − fi/2)(1 − fj/2) play an impor-
tant role here, as they force conservation of Pauli principle in the course of fermion
collisions. In the ground state, they correctly block all kinematically possible (and
thus classically possible) collisions. At high excitation energy phase space opens
up: two-body collisions then start to populate it in the course of thermalization. The
VUU scheme was very much used in the case of heavy-ion collisions in the Fermi
energy domain. As we shall see below it should also be taken into account in the
case of metal clusters, especially in the case of energetic processes.

3.3 Multiscale dynamics

Before analyzing properties of clusters (especially dynamical ones) it is interesting
to compare nuclear and cluster time scales. We use reduced units in terms of the
Fermi gas characteristics of both systems, following the values introduced above
(section 3.1). We thus define a basic time rs,0/vF and energy εF scale, as built
from the Wigner-Seitz radius rs for clusters and from the parameter r0 of nuclear
radius systematics (R ∼ r0A

1/3, with r0 ∼ 1.12 fm). For sake of simplicity, but
practically with little loss of generality, we restrict the analysis of the cluster case
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to Na, thus taking for the Wigner-Seitz radius rs = 4a0. This leads to rs/vF =
0.2 fs and εF = 3.2 eV. Systematics of electronic time scales for other alkalines
perfectly match the values obtained in the case of Na. The ionic motion times scale
with the square root of the atom mass. In nuclei the basic time and energy scales
read r0/vF = 3.3 fm/c and εF = 40 MeV. In figure 3 we have plotted times as a
function of temperature. It should be noted that this is rather a simple measure for
the average excitation energy. The choice of temperature here is practical and does
not necessarily imply a full thermalization. It allows, in turn, to overlook, to a large
extent, size dependent effects.

Figure 3. Comparison of relevant times scales in nuclei and sodium clusters. Reduced units
are used in both cases to allow a relevant comparison (see text for details). Various times plot-
ted are: plasmon period in clusters (equivalent to giant dipole resonance in nuclei), ionic time
scale (comparable to nuclear fission/fragmentation), electron evaporation time (equivalent to
neutron evaporation time), electron–electron (or nucleon-nucleon) collision time scale.

With this system of reduced units we compare in figure 3 various relevant
nuclear and sodium time scales: the cluster plasmon period (equivalent to the
giant dipole resonance in nuclei), ionic time scales (comparable to nuclear fis-
sion/fragmentation durations), electron (or neutron) evaporation time, electron–
electron (or nucleon–nucleon) time scales. The comparison in figure 3 calls for sev-
eral comments. At first glance one can note a relative similarity between electronic
and nuclear time scales. This is especially true concerning the comparable depen-
dences (or independence) of times on temperature. But details differ. One should
especially note that the hierarchy of time scales is very different in Na and nuclei.
Grossly speaking, nuclear time scales look more similar to each other than cluster
ones. There exists a natural hierarchy of well separated time scales in clusters, while
nuclear times tend to be much more mixed up. This has important implications in
particular from the theoretical point of view. In particular, the lack of a clear time
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hierarchy in nuclear dynamics makes a clean adiabatic decoupling of slow degrees
of freedom difficult. The simple Born-Oppenheimer treatment of slow degrees of
freedom has then to be replaced by the much more involved generator-coordinate-
method [15]. In cluster physics the situation is very different due the huge mass
difference between electron and ionic masses, which makes electron time scales
orders of magnitude smaller than ionic ones. Electrons are thus more responsive
than ions: they need to be accounted for in priority in cluster dynamics. It should
nevertheless be noted that the separation of electronic and ionic time scales tends
to shrink in strongly non-linear situations (in the presence of huge electromagnetic
fields).

Differences between nuclear and cluster hierarchies of time scales also concern
the times with respect to each other. The case of the role of electron–electron inter-
actions is illustrative here. They become dominant for much higher temperatures in
clusters than in nuclei. This means that mean field methods can probably be used at
much higher excitation energies in clusters than in nuclei. This is a welcome feature
in view of the theoretical difficulties raised by the inclusion of dynamical correla-
tions. Similarly, thermal emission comes into play much earlier in nuclei than in
clusters, which again reflects the stronger interference amongst nuclear time scales
as compared to cluster ones.

4 A few typical results in statics and dynamics of clusters

After the above brief survey of similarities between nuclei and metal clusters we
want now to present a few illustrative examples of properties of metal clusters. The
aim here is to describe a few typical observables which have well known counter-
parts in nuclear physics.

4.1 Shell effects

A basic and well known property of simple metal clusters is the appearance of strong
shell effects for example in the abundance spectra [2, 3], similarly to the nuclear
case. Shell effects are nevertheless also visible from other observables such as ion-
ization potentials [3]. It is interesting to remind that the identification of strong shell
effects in simple (alkaline) metal clusters in the mid 1980’s constituted a strong mo-
tivation for the study of these systems [16] and the analogy to nuclei was in turn soon
recognized and exploited [3]. The analysis of these shell closures was performed at
about the same time as their experimental identification [17], primarily within the
simple jellium model in which ionic cores are assimilated to an uniform positively
charged background. In that simple case electron levels then simply pile up in the
mean field generated by their interactions and by the ionic background. After all, the
situation, at least for small alkaline clusters, finally strongly ressembles to the case
of a simple harmonic oscillator. Note that, at variance with the nuclear case there
are in simple clusters no sizable spin orbit effects. The series of ”magic numbers”
(associated to shell closures) is then relatively easy to access.
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Figure 4. Series of magic numbers for electronic shell closures in sodium (left panel) and
magnesium (right panel) clusters. The experimental results are compared to theories of vari-
ous levels from the simplest jellium one to elaborate ones with an explicit, non local, account
(pseudo potentials) of ionic structures (left column of the right panel).

The jellium model was further refined over the years and also replaced by
more sophisticated approaches in which one explicitly accounts for ionic structure
through the use of pseudo potentials (see section 3.1). This leads, again in the sim-
ple case of alkaline metals, to basically similar results, as can be seen in figure 4.
The situation nevertheless strongly changes as soon as one considers ”less sim-
ple” materials. The case of Magnesium clusters was recently studied [18] (remind
that magnesium (electronic structure [Ne]3s2) is the nearest ”metallic” neighbour
to sodium (electronic structure [Ne]3s)). But it turns out that the situation in the
case of magnesium is quite different from the one in sodium. Indeed the subshell
closure of the 3s orbital in magnesium makes it effectively much less metallic than
sodium. This leads to a significantly different sequence of shell closures. In that
case of magnesium neither the jellium model nor models explicitely accounting for
ionic structure (even sophisticated ones using non local (orbital dependent) pseudo
potentials) are able to explain the observed series of magic numbers [19], as can be
seen from figure 4.

4.2 Optical response

Let us now consider the case of the optical response as a starter for the analysis of
cluster dynamics. Optical (or surface plasmon) response is, as already indicated, a
key tool of analysis of metal cluster properties, both in terms of structure and dy-
namics. The particular softness of the elecron clouds in metal clusters make them
especially sensitive to a coupling to light. Laser irradiations thus easily lead to a
collective oscillation of the electron cloud with respect to the ionic background. The
energy scale of the process lies in the visible part of the electromagnetic spectrum:
the phenomenon is thus known as the optical response. The optical response is very
similar to the giant dipole resonance in nuclei. There are of course differences, es-
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pecially what concerns resonance decay mechanisms. For example, in the case of
small simple metal cluster the plasmon peak lies in a desert of particle-hole exci-
tations : the mode is thus particularly robust and the signals especially clean. The
optical response turns out to constitute an exceptional tool of investigation of cluster
structure. We shall illustrate that capability on the example of deformation effects.

Deformation from optical response As the giant dipole resonance in nuclei, the
optical response provides a useful tool of analysis of deformation through the split-
ting of the excitation spectrum. The latter reflects the possibly large quadrupole
moment of the cluster. In spherical clusters the optical response is concentrated in
one (sharp) peak, which splits into two pieces for axially symmetric deformed clus-
ters. The mode oscillating along the longest axis has the lowest frequency while the
mode along the shortest axis has the highest one. Finally, in triaxial clusters one
observes three peaks, sorted inversely to the length of the axes.

z

z

z

oblate

prolate

spherical

Figure 5. Illustration of deformation splitting of the Mie resonance. Test cases are Na21
+

(spherical), Na19
+ (oblate) and Na15

+ (prolate). The left panels show the optical absorp-
tion strengths, experimental from [20] and theoretical results from linearized TDLDA on soft
jellium background [21]. The right part sketches the shapes (the deformations are exagger-
ated to make the point). The lines with arrows indicate the directions of the basic plasmon
oscillations. The symmetry axis (z axis) is indicated by a fine dashed line.
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This connection is illustrated in figure 5 for three small Na clusters, a spherical
one (Na+

21) and two deformed ones (Na+
15 and Na+

19). The case of the prolate Na15
+

cluster (lower part of the figure) is interesting to be discussed in detail. The right
part sketches the deformed shape and the corresponding dipole modes. Oscillations
along the z-axis (horizontal) are more extended and thus have lower frequency. The
orthogonal axes, in turn, are squeezed, yielding higher oscillation frequencies. The
left part of the figure shows the optical response (experimental and theoretical),
which exhibits a clear splitting into two peaks. The upper peak has twice as much
strength as the lower one which reflects the fact that there are two modes orthogonal
to the symmetry (z) axis. Theoretical (TDLDA) results agree with experimental
data and this can be taken as a clear hint that Na15

+ is a prolate cluster. A similar
reasoning holds in the case of oblate Na+

19. This time the spectrum has a large low
energy peak and a smaller high energy peak. And in the case of the spherical Na+

21

the three modes are degenerate and produce one unique, large plasmon peak.
The deformation analysis in terms of plasmon peak splitting works reliably well

for small clusters up to N ≈ 40. In larger clusters strong Landau fragmentation sets
on, which blurs the information about deformation splitting [21]. Of course, extreme
deformations and/or huge clusters nevertheless still allow one to separate clearly the
different branches of the plasmon mode (see for example the experiments on large
Au nano-rods [22]).The situation in nuclei is more mixed [23], with, in principle, the
same collective splitting of the GDR with deformation. But Landau fragmentation
prevails for small nuclei and shrinks only slowly for larger ones. The deformation
splitting can thus not uniquely be discriminanted for typical ground state deforma-
tions and it is only in super-deforemd isomers that deformation splitting overrules
Landau fragmentation. However, it is extremely difficult to measure the GDR in
nuclear isomeric states.

Temperature effects on optical response As previously mentioned, metal clusters
are produced at finite temperature in cluster sources. Temperature thus plays a key
role in the understanding of cluster properties and optical response does not violate
this rule. Systematic experimental studies have actually shown the key importance
of temperature effects on the optical response of small metal clusters [24]. Only
few theoretical calculations have been performed at finite temperature but they con-
firm these trends. An example is presented in figure 6, for the optical response of
Na+

7 clusters at various temperatures. The low temperature spectrum exhibits three
narrow and well separated peaks. We can identify on this spectrum the collective
splitting of the strongly oblate Na7

+ (see insert in bottom panel). This is comple-
mented in that case by a low energy peak, fragmented by one close 1ph state. The
effect of temperature is dramatic : the peaks grow broader and the lower double peak
merges into one.

Thermal effects at the side of the electrons cannot induce such a broadening
simply because the temperature involved here (a few hundreds K at most) corre-
spond to small energies at an electronic scale (remind that 1 eV ∼ 10 000 K). It is
the thermal ionic motion which is responsible for that behavior. The ionic excitation
energies reach down to below 100 K for Na7

+ [25]. A thermal excitation of several
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Figure 6. Photo-absorption strength for Na7
+ at three different temperatures as indicated.

The configuration is indicated in the lowest panel. Data taken from [24].

hundreds of K thus excites many ionic eigenmodes to rather large amplitudes. The
cluster then undergoes substantial thermal shape fluctuations which take place on
a time scale (hundreds of fs) much longer than the one associated to the plasmon
response (a few fs). Thus each member of the thermal ensemble with its different
deformation will contribute a different spectrum to the total optical response. These
spectra finally all add up incoherently to rather broad peaks.

4.3 Photoelectron spectra

The analysis of the kinematic characteristics of electrons emitted after a cluster ir-
radiation also constitutes a key tool of analysis of cluster properties. In the low
energy domain, namely for moderate irradiations, it gives access to single electron
properties. Indeed photoelectron spectra (PES) display the kinetic energies Ekin of
the emitted electrons which provides the binding energies Ebind of electronic levels
through the simple relationEbind = Ekin−�ω (ω being the laser frequency) at least
in the case of single photon processes (namely for laser frequencies above cluster
ionization potential). The case of multiphoton processes is more involved. It implies
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complex dynamical processes in which a simple and direct link to structural aspects
(Ebind in particular) is blurred.

The low energy domain An example of photoelectron spectra is presented in fig-
ure 7 in the case of two medium size sodium clusters (Na+

41 and Na+
93). Comparison

between experiment and theory is presented on that occasion. The calculations have
been performed at an effective mean field level (TDLDA) comparable to Skyrme
Hartree-Fock in nuclear physics. The figure allows to identify several peaks from
the spectra, which can be attributed to well defined electronic shells. The calcula-
tions lead to a comparable sequence of peaks, although sometimes with different
relative weigths. The theoretical analysis is furthermore separated in two compo-
nents, along and perpendicular to the laser polarization axis, which is a rudimentary
way to provide an access to the angular distribution of emitted electrons. Not sur-
prisingly one observes that the electron orbitals couple selectively to the laser, as a
function of their spatial extension along (or perpendicular to) the laser polarization
axis. This by the way provides an a posteriori confirmation of the level assignment
of the various observed peaks. More detailed investigations, especially in terms of
angular distributions of emitted electrons would here bring further complementing
information. We shall discuss that aspect below, in the case of a more violent irradi-
ation process (section 4.4).

Figure 7. Comparison of experimental photoelectron spectra [26] with theoretical ones in the
case of two medium size sodium clusters (Na+

41 and Na+
93). A rudimentary angular analysis is

also indicated in the theoretical case by separating electron spectra along and perpendicular
to the laser polarization axis.

Photoelectron spectroscopy in the multiphoton regime Let us now consider the
case of larger laser intensities. Figure 8 shows the PES of Na+

9 for two different
laser intensities around the transition to the high field regime. As can be seen from
the figure, the lower laser intensity still resolves the detailed single-electron states in
repeated sequences. The repetition process corresponds to processes involving more
and more photons and are thus suppressed accordingly. A moderate enhancement of
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Figure 8. Photoelectron differential cross section (arbitrary units) of Na+
9 at two intensities

as indicated. A short laser pulse with FWHM = 25 fs was used.

the laser intensity by an order of magnitude suffices to wipe out these structures.
A more or less smooth curve then emerges which can be nicely fitted to an expo-
nential decrease. The smooth pattern persist, of course, for even larger intensities.
It is then interesting to analyze the origin of these smooth pattern, a question which
is still debated. One could a priori interpret this exponential decrease as a signal
of thermalization of the electron cloud. But this argument is not applicable to short
laser pulses, as is the case here, because thermalization can hardly play a domi-
nant role when such short time scales are involved. But without arguing in terms
of thermalization one can also note that together with the dramatic changes in the
pattern of the PES one spots an equally dramatic increase in the ionization. This
large increase in net charge at the cluster site has a side-effect on binding. Indeed,
the growing Coulomb force (due to charging), leads to extra binding, which glob-
ally down-shifts electronic single particle energies by the same amount. This is a
dynamical process, which leads all levels to be smeared and eventually generates
the smooth pattern seen for the higher intensities. This process does also deliver an
exponential decrease of the PES [27]. A better indicator of thermalization would in
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fact be provided by the (more detailed) analysis of electron emission in terms of the
angular distribution of the emitted electrons. This will be discussed in section 4.4.

The PES change pattern when going to larger systems. Indeed, the larger the sys-
tem, the denser the density of electronic states, which inhibits a detailed resolution
of separate single electron states, and this even at moderate excitations. At best, one
can expect step like structures indicating bands of occupied states. Such behaviors
were observed in the case of C60 for short, moderate pulses [28] and for large Ag
clusters on substrate [29]. More recently were also published measurements on Na+

93

from [30], which show smooth trends throughout. These results were interpreted as
due to thermal emission. We have thus computed PES for Na+

93 for a variety of laser
intensities (but fixed photon frequency and pulse width). At low intensity we ob-
serve the expected step like pattern. At larger laser intensity PES exhibit smooth
pattern with nearly exponential decrease. The PES can then be simply characterized
by the slope of the exponential decrease. The criterion is unambiguous at large in-
tensity but requires some caution at lower intensities because of the step like pattern.
But it turns out that the ‘staircases’ have in fact all the same step height (on loga-
rithmic scale). Their envelope is thus a straight line to which it is easy to associate
an exponential decrease and one can extend the simple slope characterization to any
laser intensity. This allows a direct comparison to experimental data.

The experiments in [30] were done for rather long pulses with a FWHM of about
200 fs. For such long pulses one can expect to see pattern related to electron elec-
tron collisions, beyond mean-field. Nonetheless, it is interesting to compare TDLDA
(mean-field) results with those measurements in terms of global properties such as
net ionization and the slope of the PES, as done in figure 9. Note that for such long
pulses one has also to account for ionic motion which sizably alter the sequence of
electronic levels and thus the PES. This effect was of course taken into account in
the calculations presented in figure 9. The calculations reproduce the net ionization
(number of emitted electrons Nesc within a factor of two, as well as the growth with
laser intensity. This can be considered as a good agreement in view of the fact that
ionization also sensitively depends on the pulse shape, an aspect which is always
hard to account for precisely when comparing experimental and theoretical results.
Calculations use here a cosine2 pulse profile while the experimental profile is not
so well known, probably having longer tails. The results for the slopes (lower part
of figure 9) are also encouraging in size and in trend. Similar trends were reported
in [31] in the framework of a Vlasov-LDA approach. The remaining differences
between the calculations and the experimental results are thus probably to be at-
tributed to the lack of account of electron electron collisions (overlooking details of
laser pulse shape, as mentioned above or even cluster temperature control).

4.4 Angular distributions

Besides the kinetic energy, one can also measure the angular distribution of emit-
ted electrons, a quantity which also carries a lot of interesting information, both
for structure and dynamical questions. In the case of laser irradiation one expects
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(as log10(I) with I in units of W/cm2). Results from TDLDA-MD are compared with the
experimental results of [30] using comparable experimental conditions.

electrons to be emitted preferentially, at least to some extent, along laser polariza-
tion axis. In fact the amount of anisotropy somewhat depends on the experimental
conditions (characteristics of laser pulse in particular). One may even measure si-
multaneously both angular distributions and kinetic energies of emitted electrons
(see left panel of figure 10 for an example).

There are unfortunately only few available experimental data on angular dis-
tributions. An example is shown in figure 10. The left panel exhibits a combined
kinetic energy and angular distribution measurement. The system under study is a
W4

− cluster anion irradiated by a low-intensity ns laser at a frequency of 4 eV.
The anion (negatively charged cluster) has a low ionization threshold around 1.6
eV, much lower than the monomer evaporation threshold (larger than 7 eV). Ther-
mal ionization is thus strongly favored over monomer evaporation in this case. The
competition remains, though, between direct (in particular one-photon processes in
such an anion) and thermal electron emission. The extremely long laser pulse (as
compared to typical electronic or even ionic times) nevertheless gives thermaliza-
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from the center of the plot. The gray scale indicates flux: high emission shines white. The
laser polarization is along the vertical axis [32]. Right panel: angular distribution of emitted
electrons computed in quantum TDLDA (full), semi-classical Vlasov-LDA (short-dashed),
and VUU with collision term (long-dashed). Test case is Na+

41 with ionic structure. Laser
parameters are indicated in the figures. The angle is defined relative to the laser polarization
axis.

tion through electron-electron collisions good chances to be activated and efficient.
One thus expects a significant contribution from thermal emission. This is indeed
what is observed in figure 10, where light grey indicates large emission and dark
grey low emission. The broad central spot can be associated with thermal (isotropic)
emission. The kinetic energy spectra (not directly visible in the figure) indeed con-
firm the correct trend ∝ √

εkin exp (−εkin/T ) [32]. But at larger kinetic energies
(which correspond in this representation to larger radial distances) one can also spot
a non-isotropic component in the emission. It is directed along the laser polarization
axis and this is thus clearly a signal from a direct emission process competing with
thermal (isotropic) emission.

A full description of such processes should thus account for electron-electron
collisions in order to properly access the isotropic component of the electronic
emission. Such an extension of the theory would thus allow to cover both regimes,
namely direct emission as well as thermal evaporation. A way to include such ef-
fects in the TDLDA approach is to rely on the semi classical version of the the-
ory, properly extended by a collision term to account for electron electron colli-
sions [33, 34], in the spirit of similar extensions worked out several years ago in
nuclear physics [14] (see the discussion in section 3.2). The semi-classical approach
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of course requires sufficiently high excitation, but, as in the nuclear context, that is
the typical situation for thermalization to play a role at all. The right panel of figure
10 shows an example of angular distributions as obtained from such a VUU calcu-
lation. It is compared to pure mean-field results (a quantum TDLDA one and a semi
classical Vlasov-LDA one). Note that at variance with the left panel of figure 10 the
distribution has been integrated over final kinetic energy (making it a differential
cross section, not a doubly differential one). It is noteworthy first that TDLDA and
Vlasov nicely agree in that excitation regime. Both show an emission clearly peaked
along the laser polarization, a behavior which is typical of direct emission. But the
electron-electron collisions in VUU also lead to a sizeable isotropic component in
the angular distribution. Not surprisingly, the delayed emission of the thermalized
electrons has lost memory of the original polarization axis. One thus obtains a much
smoother angular distribution, as can be seen on the VUU curve of the right panel
of figure 10. The distribution is nevertheless not perfectly isotropic. There remains a
sizeable fraction of directly emitted electrons for the chosen conditions. The branch-
ing between direct and thermal emission in fact sensitively depends on the details
of the excitation. Systematic studies of these influences could thus deliver valuable
information on the underlying dynamics. But these studies have yet to be worked
out, both theoretically and experimentally.

5 Conclusions

Metal clusters and atomic nuclei are often compared. They indeed share several
common trends. They both constitute finite droplets of fermi liquids which is one
of the sources of the similarities. Both can furthermorte be well described by effec-
tive mean field appraoches. The DFT/LDA in the case of clusters is a typical such
approach, and it should be compared to Skyrme Hartree-Fock theory of nuclei. We
have presented in this contribution a few structure and dynamical properties of metal
clusters, focusing on properties of metal clusters which have similar counterparts in
nuclei. We have given a brief presentation of basic experimental observables, as
typically attained in cluster experiments. We have discussed the occurence of magic
numbers in cluster abundance spectra, in a way very similar to the nuclear case. We
have then discussed a few properties of the optical response, the cluster analogon
of the nuclear giant dipole resonance. We have shown that the optical response pro-
vides a useful tool of investigation of cluster propertie. This holds especially true
for the analysis of cluster shapes, even if thermal effects may blur the picture in
some cases. We have finally turned ourselves towards the analysis of photoelectron
spectra both in the linear and non linear domains. We have shown that moderate irra-
diations give access to single electron energies, while more violent irradiations lead
to a variety of dynamical scenarios raising debated questions such as the occurence
(or not) of thermalization at the side of electrons
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22. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen and J Feldmann, Phys. Rev. Lett. 88

(2002) 077402.
23. J.A. Maruhn et al, Phys. Rev. C71 (2005) 064328.
24. C. Ellert et al, Phys. Rev. Lett. 75 (1995) 1731.
25. P.-G. Reinhard and E. Suraud, Euro. Phys. Journ. D 21, (2002) 315.
26. G. Wrigge, M. A. Hoffmann andB. von Issendorff, Phys. Rev. A, 65 (2002) 063201.
27. A. Pohl, P.-G. Reinhard and E. Suraud, J. Phys. B, 37 (2004) 3301.
28. E. E. B. Campbell et al, Phys. Rev. Lett.84 (2000) 2128.
29. J. Lehmann et al, Phys. Rev. Lett.85 (2000) 2921.
30. R. Schlipper, R. Kusche, B. von Issendorff and H. Haberland, Appl. Phys. A 72 (2001)

255.
31. T. Fennel, G. F. Bertsch and K-H Meiwes-Broer, Euro. Phys. Journ. D 29, (2004) 367.
32. B. Baguenard, J. C. Pinar, C. Bordas and M. Broyer, Phys. Rev. A63 (2001) 023204.
33. A. Domps, P-G Reinhard and E. Suraud, Phys. Rev. Lett.80 (1998) 5520.
34. E. Giglio, P-G Reinhard and E. Suraud, J. Phs. B 34 (2001) 1253.




