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Abstract. A formalism based on the thermo field dynamics and allowing to treat thermal
effects on the Gamow-Teller strength distributions in hot spherical nuclei is presented. The
GT± strength distributions in 54,56Fe at temperature T ≤ 1 MeV are calculated with the
model Hamiltonian which contains a pairing BCS interaction and separable isovector στ
particle-hole forces. Then β−-decay and electron capture rates are calculated at temperatures
and stellar media densities corresponding to an advanced stage of stellar evolution.

1 Motivation

Now it is well established that the Gamow-Teller (GT) resonance in atomic nuclei
plays a very important role in many astrophysical processes related to weak interac-
tion mediated reactions. The examples are nuclear beta-decays and electron captures
(EC) which occur during the presupernova phase in the core collapse of a massive
star and play a decisive role at the advanced stages of stellar evolution (see e.g.
Ref. [1] and references therein). Under supernova conditions (high temperature and
density) both the processes are mainly driven by the GT transitions and, thus, their
reliable determination requires the accurate description of the GT strength distribu-
tions in nuclear spectra.

At the advanced stages of stellar evolution the capture and decay processes in
stellar environment occur not only from the ground states of nuclei but also from
thermally populated excited states that can increase the rates significantly [2]. Since
the GT transitions from excited states are not accessible by terrestrial laboratory
experiments, a reliable theoretical prediction is requested as a nuclear physics input
in simulations of the stellar evolution.

A variety of approaches have been used to take into account thermal effects on
the GT transition distributions in nuclei from Fe region (see e.g. [3–7] and references
therein).

In the present paper we study the GT strength distributions in hot nuclei applying
the quasiparticle-phonon model (QPM) [8] extended to finite temperatures exploring
the thermo field dynamics (TFD) [9, 10]. Moreover, a temperature dependence of
β-decay and electron capture rates for 54,56Fe nuclides is calculated. Actually the
problem of extending the QPM to finite temperatures was already studied earlier in
[11, 12] (see also [13]). However, there is some difference between previous papers
and the present consideration.
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2 TFD formalism

The TFD is based on the fact that the grand canonical ensemble average of any
operator Â can be replaced by a quantum expectation value of the same operator
with respect to a temperature dependent function |0(T )〉 called a thermal vacuum
state [9]. That is,

	 Â 
= Z−1(T )Tr(Â e−H/T ) = 〈0(T )|Â|0(T )〉 . (1)

Here H is the Hamiltonian of the system (the chemical potential is included in H);
T is a temperature given in units of energy; and Z is a partition function.

A thermal vacuum |0(T )〉 cannot be constructed in the Hilbert space of the orig-
inal system [9,10]. Instead, this can be done after a formal doubling of a number of
system degrees of freedom which is achieved by introducing a fictitious tilde-space
spanned by the tilde-states |ñ〉. Then the whole Hilbert space of the heated system is
spanned by a direct product of eigenstates |n〉 of the Hamiltonian (H |n〉 = En|n〉 )
belonging to the original Hilbert space and those of the tilde Hamiltonian H̃ which
correspond to the same eigenvalues, i.e. H̃ |ñ〉 = En|ñ〉 .

The time translation operator for a heated system is the thermal Hamiltonian
H = H − H̃. In order to find the excitation spectrum of a heated system one should
diagonalize H. The thermal vacuum state is the eigenstate of H corresponding to
zero eigenvalue. As was shown in [14] the diagonalization of H under certain as-
sumptions produces the thermal Hartree-Fock-Bogoliubov equations. A linear ex-
tension of the theory produces the thermal random phase approximation. In case
if the corresponding equations have several solutions one should take the solution
which provides a minimum of the corresponding thermodynamic potential

Ω = 〈0(T )|H − TK̂|0(T )〉 , (2)

Here, |0(T )〉 is a thermal vacuum within the corresponding approximation and K̂ is
the entropy operator of the system.

3 Proton-neutron RPA at finite temperatures

Here we apply the TFD formalism to evaluate the equations of the thermal proton-
neutron RPA. To simplify the corresponding equations we adopt a schematic nu-
clear Hamiltonian with separable spin-isospin interaction in the particle-hole chan-
nel. The Hamiltonian contains three different terms

H = Hsp + Hpair + Hph, (3)

where Hsp is a sum of neutron and proton mean fields and Hpair is a sum of the BCS
pairing Hamiltonians for protons and neutrons. The term Hph has the following
form:

Hph = −2χ
∑
μ

S(−)
μ (−1)μS(+)

−μ . (4)
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where the one-body operator S(−)
μ reads

S(−)
μ =

∑
jpmp

jnmn

〈jpmp|σμt−|jnmn〉a+
jpmp

ajnmn
, S(+)

μ = (−1)μ(S(−)
−μ )+ , (5)

The following notations are used above: a+
jm and ajm are the creation and annihila-

tion operators of particles with subshell quantum numbers jm ≡ n, l, j,m; χ is the
spin-isovector coupling constant; t− is isospin lowering operator.

The Hamiltonian (3) was widely used in theoretical studies of the GT resonances
and in framework of the QPM in particular [15, 16].

First, following the TFD prescriptions we construct the thermal Hamiltonian
H and introduce thermal quasiparticle operators which diagonalize single-particle
and pairing part of it. Original particle operators and the thermal quasiparticle op-
erators are connected by two unitary Bogoliubov transformations. The first one is
the standard Bogoliubov transformation which mixes the creation and annihilation
operators of particle:

ajm=ujαjm + vjα
+
jm ,

a+
jm=ujα

+
jm + vjαjm , (u2

j + v2
j = 1) . (6)

Notation jm stands for the time reversed state. The same transformation (with the
same uj and vj) should be made for tilde-operators ã+

jm, ãjm thus producing tilde-
quasiparticles α̃+

jm and α̃jm. To take into account thermal effects the second (or
thermal) Bogoliubov transformation should be made. It is the following transforma-
tion from ordinary and tilde quasiparticle operators to thermal quasiparticle opera-
tors:

α+
jm=xjβ

+
jm + iyjβ̃jm ,

α̃+
jm=xj β̃

+
jm − iyjβjm , (x2

j + y2
j = 1) . (7)

We should stress that in contrast with previous works [9, 11–13] we prefer here to
explore a complex thermal transformation. In this respect we follow to I. Ojima [17]
who has shown that this type of thermal rotation for fermion operators allow to get
right asymptotic behavior for RPA operators of thermal phonons (details will be
given elsewhere [18]).

The coefficients uj, vj and xj , yj are determined demanding a minima of the
free energy of a nucleus governed by the Hamiltonian

Hsqp = Hsp + Hpair − H̃sp − H̃pair

on the thermal vacuum state |0(T )〉sqp defined as follows: βjm|0(T )〉sqp = 0. As
a result one obtains the well known BCS equations at finite temperature for the
neutron and proton pairing gaps Δn,p and chemical potentials λn,p (see for details
[11–13]). The coefficients xj , yj appear to be directly connected with the Fermi-
Dirac thermal occupation numbers for the Bogoliubov quasiparticles, namely
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yj =
[
1 + exp

(εj
T

)]−1/2

.

where εj is the energy of thermal quasiparticle state β+
jm|0(T )〉sqp. With the coeffi-

cients uj , vj , xj , yj the Hamiltonian Hsqp becomes diagonal in terms of thermal
quasiparticles

Hsqp = Hsp + Hpair �
∑
jm

εj(β+
jmβjm − β̃+

jmβ̃jm), (8)

i.e. Hsqp describes a system of independent thermal quasiparticles.
At the next step we take into account a long range particle-hole forces Hph (4)

within the thermal version of the proton-neutron RPA approximation. To proceed,
we introduce the following thermal GT phonon operator:

Q+
μi=

1√
2

∑
jpjn

(
ψijpjn[β

+
jp
β+
jn

]μ+ψ̃ijpjn[β̃
+
jp
β̃+
jn

]μ−iηijpjn[β
+
jp
β̃+
jn

]μ−iη̃ijpjn[β̃
+
jp
β+
jn

]μ
)

+
(
φijpjn[βjpβjn ]μ+φ̃ijpjn[β̃jp β̃jn ]μ−iξijpjn[βjp β̃jn ]μ−iξ̃ijpjn[β̃jpβjn ]μ

)
. (9)

Above, the square brackets [ ]μ stand for coupling of single-particle angular mo-
menta of proton and neutron thermal quasiparticles jp, jn to the total angular mo-
mentum 1 and its projection μ. Further, it is assumed that thermal phonons can be
treated as bosons. This produces some constrains on the phonon amplitudes [12].

Then the thermal RPA equations are obtained by applying a variational principle

δ
[
〈Ψ0(T )|QμiHQ+

μi|Ψ0(T )〉 − ωi
2

(
〈Ψ0(T )|QμiQ

+
μi|Ψ0(T )〉 − 1

)]
= 0 . (10)

Here H is the full Hamiltonian expressed in terms of thermal quasiparticle oper-
ators; the function |Ψ0(T )〉 is a new thermal vacuum state which is treated as the
phonon vacuum. The Lagrangian factor ωi plays a role of the one-phonon state en-
ergy. After variation over phonon amplitudes one gets a homogeneous system of
linear equations which has a solution if ωi is a root of the following secular equa-
tion: [

χX(+)(ωi) − 1
][
χX(−)(ωi) − 1

]− [
χX(0)(ωi)

]2 = 0 , (11)

Functions X(±)(ωi) , X(0)(ωi) are defined as

X(±)(ωi)=
2
3

∑
jpjn

f2
jpjn

{
ε
(+)
jpjn

(u(±)
jpjn

)2

(ε(+)
jpjn

)2−ω2
i

(1−y2
jp−y2

jn)− ε
(−)
jpjn

(v(∓)
jpjn

)2

(ε(−)
jpjn

)2−ω2
i

(y2
jp−y2

jn)

}
,

X(0)(ωi)=
2
3
ωi
∑
jpjn

f2
jpjn

{
u

(+)
jpjn

u
(−)
jpjn

(ε(+)
jpjn

)2−ω2
i

(1−y2
jp−y2

jn)− v
(−)
jpjn

v
(+)
jpjn

(ε(−)
jpjn

)2−ω2
i

(y2
jp−y2

jn)

}
.

The following notations are introduced: ε(±)
jpjp

= εjp ±εjn , u(±)
jpjp

= ujpvjn ±vjpujn ,

v
(±)
jpjp

=ujpujn±vjpnjn and fjpjn=〈jp‖σt−‖jn〉.
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The poles ε(−)
jpjn

in Eq. (11) which do not exist in the pnRPA equations at T = 0

arise due to crossover terms β+β̃+ in the thermal phonon structure (9). It should be
stressed also that solutions of TRPA equations corresponding to negative eigenval-
ues should be interpreted as tilde-phonon states Q̃+

μi|Ψ0(T )〉.
The secular equation (11) was evaluated applying TFD technique in [12] as well.

However, applying the variation principle in the form (10) one cannot determine
unambiguously phonon amplitudesψ, φ, η, ξ and their tilde-counterparts. This point
has been missed in [11, 12].

The uncertainty arises due to invariance of the thermal Hamiltonian

H =
∑
μ i

ωi(Q+
μiQμi − Q̃+

μiQ̃μi) (12)

under the following thermal rotation:

Q+
μi → XiQ

+
μi − YiQ̃μi , Q̃+

μi → XiQ̃
+
μi − YiQμi , (X2

i − Y 2
i = 1) .

In full analogy with the case of thermal pairing Hamiltonian when the coefficients
xj , yj have been determined unambiguously finding the minima of the free energy
(see [6, 12] for details), the coefficients Xi and Yi (and consequently the thermal
phonon structure) can be determined by minimizing the corresponding thermody-
namic potential as well [9, 10]. The variation procedure gives the following result:

Yi =
[
exp

(ωi
T

)
− 1

]−1/2

, Xi =
[
1 − exp

(
−ωi
T

)]−1/2

. (13)

Thus the factor Y 2
i is nothing else but the thermal Bose-Einstein occupation factor

for the thermal phonon with the energy ωi.
Rates of GT excitation and deexcitation processes involving hot nuclei are cal-

culated with operators S(−)
λμ or S(+)

λμ (5). Nuclear structure factors for transitions
from the thermal vacuum |Ψ0(T )〉 to usual and tilde thermal one-phonon states read

Φ
(∓)
i =

∣∣∣〈Ψ0(T )Qμi‖S(∓)
μ ‖Ψ0(T )〉

∣∣∣2 =
9
4

(1 ± Yi)2
χ2Ni

X2
i , (14)

E
(∓)
i = ωi ∓ (Δλnp + Δmnp),

Φ̃
(∓)
i =

∣∣∣〈Ψ0(T )Q̃μi‖S(∓)
μ ‖Ψ0(T )〉

∣∣∣2 =
9
4

(1 ∓ Yi)2
χ2Ni

Y 2
i , (15)

Ẽ
(∓)
i = −ωi ± (Δλnp + Δmnp),

The values E(∓)
i and Ẽ

(∓)
i are the energies of corresponding transitions. They in-

clude thermal phonon energies ωi and the differences between neutron and proton
chemical potentials Δλnp in the parent nuclei as well as the mass difference of
neutron and proton Δmnp. The values Yi, Ni are normalization factors of thermal
one-phonon wave function.
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Factor Φ(∓)
i (14) is valid for endoenergetic processes, i.e. for transitions to the

states lying higher than the thermal vacuum. In stellar environment these processes
are electron and positron captures. Factor Φ̃(∓)

i (15) should be used for exoenergetic
processes, i.e. for transitions to the states lying lower than the thermal vacuum.
These processes are β± decays.

4 Numerical results

Numerical calculations are made within a rather schematic model for the nuclides
54,56Fe which are stable against a beta-decay in their ground states. We apply the
Hamiltonian from Refs. [15, 16] which consists of the phenomenological neutron
and proton mean-fields of the Woods-Saxon form, neutron-neutron and proton-
proton pairing interactions with a constant matrix elements Gn, Gp (i.e. of the BCS
type) and a spin-isospin separable interaction 4 in the particle-hole channel. Since
only the isovector part of the latter is taken into account, the effective spin-isospin
interaction contains the only coupling constant χ. The constant is used to fit the ex-
perimental values of the Gamow-Teller resonance energy. The empirical value of χ
appears to be in agreement with the estimations of [15]. The theoretical strengths
collected in the GT resonances in 54,56Fe exceed the corresponding experimental
values from [19, 20]. To achieve an agreement with experimental data we introduce
a quenching factor q in the corresponding transition operator (5). The q value is
close to that from other theoretical studies of GT resonance, q = 0.74.

In Figs. 1, 2 the strength distributions of the Gamow-Teller transitions of the
GT− and GT+ type built on the 54,56Fe nuclides at different temperatures T are
displayed.

At T = 0 all the GT-strengths are at the energies higher then the ground state
of the parent nuclides 54,56Fe. The strengths are concentrated mainly in one or a
few one-phonon states, i.e. in the corresponding GT resonances1. With temperature
increasing a small amount of both the GT− and GT+ strengths appear at negative
energies E. These GT-strength fractions correspond to tilde-phonon excitations and
appears to be responsible for β+ or β− decays of 54,56Fe from thermal ground
states.

The appearance of GT-strength at negative E values is one of the reason of a
decrease of the GT resonance energy centroid at finite temperatures. The other ones
are diminishing of pairing correlations and a thermal smearing of the Fermi surface
which makes possible GT transitions with low energies. The decrease of the GT+

resonance energy is important for EC rates making them higher at low densities of
degenerate electron gas in stellar media. The decrease of the GT− resonance energy
noticeably affects r-process of nucleosynthesis.

The GT-strength distributions presented above are used to calculate EC and β−

decay rates for the same nuclei in stellar media at presupernova conditions. In this
approach it is assumed that the parent nuclei 54,56Fe are in a thermal equilibrium

1 Please, note the logarithmic scale of the abscissae axis in Figs. 1 and 2.
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Figure 1. GT− (left panel) and GT+ (right panel) strength distributions built on the top of
54Fe at different temperatures. E – energy transferred to the target nucleus.

state which is treated as a thermal vacuum state (thermal phonon vacuum |Ψ0(T )〉).
Electron capture process corresponds to transition |Ψ0(T )〉 → Q+

μi|Ψ0(T )〉 and β−

decay to |Ψ0(T )〉 → Q̃+
μi|Ψ0(T )〉. Certainly, only allowed GT transitions are taken

into account in this consideration.
Moreover, at temperatures typical for the considered stellar evolution stage (1÷

10)× 109 Ko atoms are fully ionized and nuclei are embedded in degenerate gas of
electrons. Under these circumstances the total rate of EC or β− decay reads

λα =
ln 2
D

∑
j=i, ĩ

BjF
α
j , α = EC, β−. (16)

The sum in (16) is running over all thermal one-phonon states, both corresponding to
the positive roots as well as negative ones (i.e. tilde states); Bj is a reduced transition
probability of the corresponding transition, and Fαj is a phase space integral.

The expression for Bj is the following:

Bj =
(
gA

gV

)2

eff

Φ
(∓)
j (GT) , (‘ + ‘ refers to EC, ‘ − ‘to β− decay).
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Figure 2. GT− (left panel) and GT+ (right panel) strength distributions built on the top of
56Fe at different temperatures. E – energy transferred to the target nucleus.

The phase space integral F βj for β− decay reads

F βj =

qj∫
1

w2(qj − w)2G(Z + 1, w)(1 − S∓)dw

whereas for EC it is

FEC
j =

∞∫
wl

w2(qj + w)2G(Z,w)S∓dw.

The new notations above are the following: qj = −E(±)
j /mec

2 is the decay (cap-
ture) total energy (or the energy of j-th thermal phonon state, negative or positive);
wl = 1 if qj ≥ −1, or wl = −qj if qj < −1 is the capture threshold; G(Z,w) -
the Fermi function taking into account a distortion of electron wave function in the
Coulomb field of a nucleus; S− is a thermal distribution function of electrons over
energy in a stellar media. It has the following shape:

S− =
[
exp

(
ω − 1 − UF

kT

)
+ 1

]−1

,
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Here k is the Boltzman constant, UF - the Fermi energy of electrons which should
be found at given values of T and ρ from integral equation.

Figure 3. Electron capture (left panel) and β−-decay (right panel) rates for 54Fe as a function
of temperature T at three values of the electron density ρYe. T is in units of T9 = 109 K;
ρYe is in units of moles/cm3.

Figure 4. Electron-capture and β−-decay rates for 56Fe as a function of temperature T at
three values of the density ρYe. T is in units of T9 = 109 K; ρYe is in units of moles/cm3.
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The calculated λEC and λβ for 54,56Fe are displayed in Figs. 3 and 4, respec-
tively. The EC rates increase when temperature as well as the density increase. The
reason is an increase of a number of electrons with energies near or higher the GT+

resonance energy. A decrease in the GT+ resonance energy with T increasing also
contributes to increase in λEC. The EC rates displayed in Figs. 3 and 4 agree well
with the results of shell-model calculations in Refs. [1].

At the same time λβ is affected by increase of T and ρYe in opposite ways. A rise
of density ρYe suppresses the β− decay rate due to diminishing a phase space avail-
able for escaping electrons. However, increase in temperature weakens the Pauli
blocking and enhances a contribution of the GT− transitions from excited states of
the parent nuclei. In contrast with the EC rate our λβ values appear to be much
smaller at low temperatures than those from [1]. The reason is much larger GT−
strength in the β− decay energy window predicted in our calculations. We surmise
that more adequate description of the GT-strength distribution, e.g. incorporation in
our scheme a coupling of GT-phonons with more complex configurations combining
approaches of Ref. [16] and [11, 18] will improve the agreement.

5 Conclusions

An approach based on the thermo field dynamics and adapted to describe thermal
effects on GT strength distributions in nuclei was presented. The thermal neutron-
proton RPA equations were evaluated and examples of GT-resonance behavior at
finite temperatures were given. Our calculations of electron capture and β− decay
rates for hot nuclei 54,56Fe in stellar media gave results in reasonable agreement with
the previous ones [1]. However, further development of the approach is necessary.
A desirable improvement would be an inclusion of a coupling of the RPA GT-states
with more complex ones.
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