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Abstract. We show the energy distributions of the fragments after the 3-body decay of many
body resonances. We use them to study the decay mechanisms. The wave functions are com-
puted by the complex-scaled hyperspherical adiabatic expansion method. The large-distance
part of the wave functions is crucial and must be accurately computed. We illustrate by show-
ing the results for *C and °Be resonances.

1 Introduction

The 3-body decay of many-body resonances can be measured very accurately in
complete kinematics. This allows us to study different decay mechanisms, often di-
vided into direct versus sequential. Direct decay takes place when the three particles
leave simultaneously their interaction regions, while sequential decay proceeds via
an intermediate 2-body configuration. The two cases we shall use here as examples
(*2C and °Be) each present their own intriguing problems but they are moreover
requested for astrophysical appplications.

The '2C resonances below the proton separation threshold have been studied
over many years because of its astrophysical interest, since triple o process is one
of the key processes in stellar nucleosynthesis [1]. Unfortunately many unanswered
questions still remain, i.e. what are the energies, angular momenta and decay prop-
erties of these low-lying resonances. Morinaga conjectured in the 1950s [2] the ex-
istence of a 27 resonance as a member of a rotational band of the Hoyle state (0T at
7.65 MeV of excitation energy), but no agreement has yet been reached theoretically
or experimentally for the position of the first excited 2% state of 12C.

Experimentalists discuss with no agreement the decay of the 5/2~ resonance of
9Be at 2.4 MeV of excitation energy as sequential via ®Be or °He. The only known
procedure used by experimentalists in order to analyze 3-body decay experiments is
R-matrix analysis, and it assumes sequential decay via intermediate configurations.
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Moreover the intermediate paths are not observables in quantum mechanics. The
interpretation of the data are then used to derive the reaction rates of the inverse
process, and the classification into decay modes are the results of interpretation
or model computations. A correct interpretation and understanding of the data is
crucial to get a reliable application.

The energy distribution of the fragments after the decay is the only experimental
information that allows us to study the decay path. This information is contained
in the large-distance part of the wave function, which has then to be accurately
computed. We will show results for individual particle energy distributions, energy
correlations of Dalitz plots and angular distributions.

2 Theoretical Framework

Since the resonances under study decay into three particles, we are dealing with a 3-
body problem. The Faddeev equations describe a 3-body system. We solve them by
using the complex-scaled adiabatic hyperspherical expansion method [3]. The ad-
vantage of using complex scaling is that the resonances can be treated as if they were
bound states. The appropriate coordmates are the so-called hyperspherical coordi-
nates and consist of the hyperradius p? = 4 Zz 1 (75 — R)?, and five hyperangles.
In the adiabatic hyperspherical expansion method the angular part of the Faddeev
equations,

) 2m .
(Ta = M) By + 5o Vibusn =0 i=1,2,3, (1)
is solved first and the angular eigenfunctions are then used as a basis to expand the
total wave function
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The p-dependent expansion coefficients, f,,(p), are the hyperradial wave functions
obtained from the coupled set of hyperradial equations
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W, (p) = R?\,,/2m are the angular eigenvalues of the 3-body system Hamiltonian
with fixed p, V3 is the 3-body potential, E is the 3-body energy and P, are the
non adiabatic terms. The eigenvalues W, (p) of the angular equations Eq. (1) serve
as effective potentials.

We have chosen a fenomenological Ali-Bodmer a—a potential slightly modified
in order to reproduce the s-wave resonance of 8Be [4]. For the av — n interaction we
use a potential constructed to reproduce the low-energy o — n phase-shifts. The
energy of the resonance is corrected by including a diagonal 3-body interaction
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Vap, = Sexp(—p?/b?). This effective 3-body potential provides a continuation of
the three-body formulation to small distances where N-body degrees of freedom
possibly are more appropriate. The structure of the resonance is maintained since
V3, only depends on p.

The momentum distribution of the decay fragments is determined by the Fourier
transform of the coordinate-space wave function. The hyperspherical harmonics
transform into themselves after Fourier transformation. It has been shown [5] that
the angular amplitude of the momentum-space wave function of the resonance is
directly proportional to the coordinate-space one for a large value of p. Numerically
converged results in the appropriate region of p-values are then needed in order to
have a reliable computation. The probability distribution is obtained after integration
over the four hyperangles describing the directions of the momenta,

P(ki) o P(cos? o) o (sin 2cv) /d(ch dQy | (p, o, 2., 02,)]7 . 4)

The asymptotic behavior is reached for hyperradii larger than about 60 fm. There
is a small variation of the distribution from 70 to 100 fm, that shows the stability
and convergence of the computation. We have chosen 80 fm as the value of p where
the energy distributions should be computed. We have performed a Monte Carlo
integration over the phase space to get the probability distributions.

3 Decay of 12C Resonances

We find fourteen resonances for 12C below the proton separation threshold for most
angular momenta and both parities. The short-distance part of the wave function
provides us with information of the energies and widths of the resonances and of
their partial wave decomposition [6].

The individual « energy distributions show the probability of finding one « par-
ticle with a given energy. The Dalitz plots contain more information than the indi-
vidual distributions, by showing how the three particles share the energy after the
decay. And finally the angular distribution provides us with information about the
preferred direction of the decaying particles and the angular momentum.

Natural-parity states. These states can breakup sequentially via 8Be(0"). When this
happens one of the adiabatic components of the wave function must approach the
2-body behavior. This means that this component can be identified and therefore the
amount of sequential decay can be estimated. Unfortunately the momentum distri-
butions related to this component are not accurate, because the 2-body asymptotics
is not reached for p ~ 100 fm. The contribution from this component can be then
replaced by the known 2-body asymptotic behavior. This is illustrated in Figure 1
for the 4™ resonance. We estimate a 20% of sequential decay and the rest (80%) di-
rect decay into the 3-body continuum. In the figure corresponding to the sequential
decay we can clearly see how one of the « particles tries to carry all the available



196 R. Alvarez-Rodriguez et al.

4 I I I

i TOTAL = DIRECT 1+ [ SEQUENTIAL

3 . — 80% - F 20% -
2>
P i 4 L 1
o
o | L 1L
2.

1 - . - — - -

0 | | | )

0 0.5 1 0 0.5 1 0 0.5 1

E /E E /E E
o o, max (04 ol,max ol o, max

Figure 1. The o particle energy distribution for the 4™ resonance of 12C at an excitation
energy of 14.10 MeV (or 6.83 MeV above the 3« threshold). On the left side the total distri-
bution. In the middle the contribution to the energy distribution after removal of the sequential
part. On the right side the sequential energy distribution.
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Figure 2. The « particle energy distribution (left), the Dalitz plot (middle) and the angular
distribution (right) for the 4T resonance of '2C at an excitation energy of 14.10 MeV (or
6.83 MeV above the 3« threshold). 6 is the angle between the direction formed by two of the
particles and the direction formed by their center of mass and the third particle.

energy ((the narrow peak at maximum energy in sequential decay), while the other
two share the remaining energy (the square distribution).

In order to make a clearer comparison with the experiment, we remove the se-
quential decay via the ®Be ground state. In Figure 2 we show the energy distribution
for one « particle, the Dalitz plot and the angular distribution [7]. The distribution of
the kinetic energy of the particles is rather diffuse (middle of figure), in contrast with
the sequential distribution showed in Figure 1. The angular distribution exhibits a
smooth peak around /2.

Unnatural-parity states. Angular momentum and parity conservation forbid the de-
cay of these states via the ®Be ground state. Figure 3 shows the energy distribu-
tion [8], Dalitz plot and angular distribution for the 1% resonance at 11.7 MeV of
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Figure 3. The « particle energy distribution (left), the Dalitz plot (middle) and the angular
distribution (right) for the 17 resonance of 12C at an excitation energy of 11.7 MeV (or
5.4 MeV above the 3« threshold). 6 is the angle between the direction formed by two of
the particles and the direction formed by their center of mass and the third particle. The
experimental data is from [9].

excitation energy. We also show experimental data for the energy distribution [9].
The Dalitz plot can also be compared to the experimental one showed in [10]. In
both cases the agreement is impressive. Moreover, this state is known to be a “shell-
model” state with no significant cluster structure, but it is clear that the 3-body
cluster model provides a good description of its decay into three « particles.

We have also compared our computations with the experimental distribu-
tions obtained from the reaction 'B(®He,daa) that has been studied at CMAM
(Madrid, Spain) in March 2008 [11]. A preliminary analysis of the data shows a
very nice agreement with our predictions, both for energy distributions, Dalitz plots
and angular distributions.

4 Decay of 2Be Resonances

The low-lying “Be resonances decay into one neutron and two « particles. The same
formalism used for *2C can then be applied here. The 5/2~ state of “Be can decay
sequentially via the narrow ®Be(0T). The other sequential decay channels for this
state lies above the energy of the resonance, but due to their broad width, a virtual
(energy forbidden) decay through their tails could also contribute. These 2-body
states are *Be(27), "He(ps2) and *He(p; /2). The decay of this resonance has been
controversial, since experimental groups do not agree over its path. The authors
of [12] claim that the decay occurs mainly (86%) via 8Be(27), in agreement with
the theoretical prediction from [13] but in contrast with [14].

We estimate that at large distances only 3% of the wave function corresponds to
the adiabatic component related to the ground state structure of ®Be [15]. The dom-
inating adiabatic component represents 96% of the wave function at large distances.
Figure 4 shows the partial wave decomposition for this dominating component in
the two different Jacobi sets that we can consider in this case. On the left side we
can see that at large distances the structure is almost entirely 2/ between the two «
particles coupled to 17 between the neutron and the center of mass of the « parti-
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Figure 4. The probabilities for different angular momentum combinations in the two Jacobi
sets for the dominating adiabatic component (n=1).

cles. On the right side the same wave function written in the other Jacobi set reveals
®He structure of 1% between the neutron and one of the « particles in turn coupled
to 27 between these two and the other a.

We plot in Figure 5 the neutron energy distribution and the angular distribution
compared to the experimental ones from [12]. Even though our distribution lies a
bit above the experimental one and at high energies a bit below at low energies, we
are able to reproduce nicely the experimental data.

Probability (a.u.)

/2
0, (rad)

Figure 5. The theoretical and experimental [12] distribution for the neutron energy (left) and
the angular distribution (right) after the decay of the 9Be(5 /27) resonance at 2.4 MeV of
excitation energy.



Energy Distributions from 3-Body Decaying Resonances 199

2 T T T T T T T T T T T T T

P — p
30 fm — 60 fm
[ — 40 fm . s+ 70 fm b
---- 50 fm 04— F'y |— s0fm
sl <+ = 70 fm "/- == 9fm | _|
- —— 80 fm F Wi + =+ 100 fm

probability (a.u.)

Figure 6. The evolution with the hyperradius for the two different sets of Jacobi coordinates
of the probability distributions for the ratios between distances or momenta of two particles
and their center of mass and the third particle. The inset shows the contribution from the
sequential decay through ®Be(0™).

We usually compute the energy distributions from the large-distance part of the
wave function, that is where the asymptotical behavior has been reached and the
distribution is stable as function of hyperradius. But we would also like to find out
about the evolution of the distribution from small to large distances. We show in
Figure 6 the probability of finding a given value of the ratio of the distance between
two particles and the distance between their center of mass and the third particle.
We plot this probability for several values of the hyperradius, from small distance
(30 fm) to large distance (90 fm). In the first set of Jacobi coordinates there is a peak
at small z/y (see inset of Figure 6). The distance between the two «’s is constant
with increasing hyperradius. This is the behavior that one expects when there is
a ®Be structure, and it is related to the adiabatic component that gives the 3% of
sequential decay through 8Be(0%). In the other Jacobi set we find a peak at small
x/y related to °He structure that disappears as we increase the hyperradius. We
can then clearly distinguish one of the possible decay modes while the other two
possible decay modes can not be distinguished from each other or from the direct
decay into the 3-body continuum. Reaction rates extracted from derived branching
ratios can then be misleading.

Figure 7 shows the energy correlations exhibited by Dalitz plots. We plot both
a — a and o — n combinations. The figure on the left is symmetric, since the a’s
are identical particles. The small region at low energy is related to the sequential
decay via ®Be(0™), in which the neutron takes most of the available energy and the
two a’s share the small amount of remaining energy. This fact is also reflected on
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Figure 7. The Dalitz plots showing a-« (left) and n-« (right) energy correlations for the
9Be(5,/27) resonance.

the right side of the figure as a small shadow around the maximum energy of the
neutron.

We have seen that sequential descriptions via 8Be(2¥) and He(p) both are
equally consistent with angular momentum couplings. However, at large distances
we do not see intermediate configurations where two particles are spatially close
and the third one is far away. A direct decay picture is more consistent.

5 Summary

‘We have computed the energy distributions of 3-body decaying resonances using the
hyperspherical adiabatic expansion method combined with complex scaling. These
distributions reflect the structure related to the decay mechanism. We are able to
distinguish allowed sequential decays via 2-body configurations.

In general, decays via high-lying or broad resonances are very unlikely because
the corresponding components would be depopulated already at small hyperradii
where the coupling is strong. Sequential decays via energy allowed low-lying and
narrow resonances are possible but not unavoidable. Virtual sequential decays are
possible when the two-body resonance energy and width both are small and the
effective barrier therefore very thick. Several descriptions in terms of different basis
sets may be equally efficient.

We illustrate by application to the decay of 12C and ?Be resonances. We show
individual particle energy distributions, Dalitz plots and angular distributions. When
experimental information is available, we find a good agreement with the data.
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