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Abstract. The formation of neutron skin and its evolution with an increase of the neutron
number is investigated within a self-consistent framework based on deformed Hartree-Fock
calculations with density dependent Skyrme forces and pairing correlations in BCS approxi-
mation. We study several isotopic chains of Ni, Kr, and Sn nuclei and consider all the experi-
mentally observed isotopes from neutron-deficient to neutron-rich. Various definitions of the
neutron skin thickness based on the differences between neutron and proton radii as well as
on comparison of the tails of the neutron and proton density distributions have been tested.
The effects of deformation on the neutron skins in even-even deformed nuclei based on the
example of Kr isotopes are discussed.

1 Introduction

The determination of charge radii and extraction of nuclear matter radii are crucial
for studying the evolution of neutron and proton skins along isotopic chains. To
get information on the neutron skin thickness one needs data obtained with probes
having different sensitivities to the proton and neutron distributions. The methods
for extracting the neutron skin thickness mostly include hadron scattering [1, 2],
antiprotonic atoms [3], parity violating electron scattering [4–6], as well as giant
dipole resonance method [7] and spin-dipole resonance method [8, 9].

On the theoretical side, calculations of nuclear charge and matter radii of ex-
otic nuclei are usually made in the framework of mean-field approaches, namely
Hartree-Fock (HF) method or Hartree-Fock-Bogoliubov (HFB) method including
pairing correlations (e.g., Ref. [10]). Recently, the self-consistent relativistic mean-
field (RMF) model has been widely applied to both stable and unstable nuclei (e.g.,
Ref. [11]). Many calculations show that the RMF model can reproduce with good
precision a number of ground-state nuclear properties including the charge radii
[12]. The charge rms radii were successfully described very recently in Ref. [10],
where a generator coordinate method (GCM) on top of Gogny HFB calculations
was explored.

Theoretical identification of skin structure in neutron-rich weakly bound nuclei,
however, is still a matter of discussion. In Ref. [13] a definition of the neutron skin
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and its appearance were presented in terms of spherical HF calculations. The pro-
posed criteria which deal with proton and neutron densities allowed one to predict
neutron skins in nuclei far from the β stability line. The Helm model [14, 15] has
been applied in Ref. [16] to analyze neutron and proton skins, as well as halos, of
even-even Ni, Sn, and Pb isotopes in terms of form factors.

In the present study (as well as in Ref. [17]), the properties of even-even Ni
(A=48–78), Kr (A=70–100), and Sn (A=100–136) isotopes are described using the
deformed self-consistent mean-field Skyrme HF+BCS method. We choose some
medium and heavy Ni, Kr, and Sn isotopes because many of these sets, which lie
in the nuclear chart between the proton and neutron drip lines can be formed as ra-
dioactive ions to perform scattering experiments. The main goal of this study is to
clarify theoretically the emergence of the neutron and proton skins in neutron-rich
and neutron-deficient isotopes, respectively, by testing different definitions for the
skin thickness in the framework of the deformed Skyrme HF+BCS model. Alterna-
tively to one of the criteria for the neutron skin proposed in Ref. [13] we consider
another one which treats proton and neutron densities in a similar way. The calcu-
lated charge rms radii are compared with the laser or muonic atoms spectroscopy
measurements of isotope shifts performed on Sn [18–21], Ni [22, 23], and Kr [24]
isotopes. The neutron skin thicknesses obtained in this paper are compared with the
available experimental data extracted from methods mentioned above for even-even
Sn isotopes with masses from 112 to 124. We also study whether the emergence
of a skin is influenced by the nuclear shape, an issue that has not been sufficiently
studied so far. The question of skin formation in nuclei having a non-spherical shape
is discussed in detail on the example of Kr isotopes, assuming axial symmetry.

2 Theoretical Formalism

The results discussed in this paper have been obtained from self-consistent de-
formed Hartree-Fock calculations with density dependent Skyrme interactions [25]
and pairing correlations. Pairing between like nucleons has been included by solv-
ing the BCS equations at each iteration either with a fixed pairing gap parameter
(determined from the odd-even experimental mass differences) or with a fixed pair-
ing strength parameter. We consider the Skyrme force SLy4 [26]. We also show in
some instances the results obtained from other parametrizations, namely Sk3 [27]
and SG2 [28] because they are among the most extensively used Skyrme forces and
are considered as standard references.

The spin-independent proton and neutron densities are given by

ρ(�R) = ρ(r, z) =
∑
i

2v2
i ρi(r, z) , (1)

in terms of the occupation probabilities v2
i resulting from the BCS equations and

the single-particle densities ρi. The multipole decomposition of the density can be
written as [25]
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ρ(r, z) =
∑
λ

ρλ(R)Pλ(cos θ) = ρ0(R) + ρ2(R)P2(cos θ) + . . . , (2)

with multipole components λ

ρλ(R) =
2λ+ 1

2

∫ +1

−1

Pλ(cos θ)ρ(R cos θ,R sin θ)d(cos θ) , (3)

and normalization given by∫
ρ(�R)d�R = X ; 4π

∫
R2dRρ0(R) = X , (4)

with X = Z, N for protons and neutrons, respectively.
The mean square radii for protons and neutrons are defined as

< r2p,n >=
∫
R2ρp,n(�R)d�R∫
ρp,n(�R)d�R

, (5)

and the rms radii for protons and neutrons are simply given by

rp,n =< r2p,n >
1/2 . (6)

The mean square radius of the charge distribution in a nucleus can be expressed
as

< r2ch >=< r2p > + < r2ch >p +(N/Z) < r2ch >n +r2CM + r2SO , (7)

where < r2p > is the mean square radius of the point proton distribution in the
nucleus (5), < r2ch >p and < r2ch >n are the mean square charge radii of the charge
distributions in a proton and a neutron, respectively. r2CM is a small correction due
to the center of mass motion, which is evaluated assuming harmonic-oscillator wave
functions. The last term r2SO is a tiny spin-orbit contribution to the charge density.
Correspondingly, we define the charge rms radius

rc =< r2ch >
1/2 . (8)

To study the neutron skin thickness we will use first the difference between
the neutron and proton rms radii to characterize the different spatial extensions of
neutron and proton densities. But a more effective tool to analyze skins [16] is the
Helm model [14,15]. This is a model that allows one to extract from the form factor
in a simple way the two main characteristics of the density, a diffraction radius and
a surface thickness. In this model one describes the density by convoluting a hard
sphere (hs) density having diffraction radius Rd with a gaussian of variance σ,

ρHelm(r;Rd, σ) = ρhs(r;Rd) ∗ ρG(r;σ) , (9)

where
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ρhs(r,Rd) =
3X

4πR3
d

Θ(Rd − r), (10)

and
ρG(r;σ) = (2πσ2)−3/2e(−r

2/2σ2). (11)

The corresponding Helm form factor is

FHelm(q) = Fhs(q;Rd)FG(q;σ) =
3
qRd

j1(qRd)e−σ
2q2/2 . (12)

Now, the most prominent feature of the density distribution, namely its exten-
sion, can be related to the first zero in the form factor, this is the diffraction radius

Rd = 4.49341/q1 , (13)

where q1 is the first zero of the form factor. The nuclear surface width σ can be
related to the height of the second maximum of the form factor located at qmax:

σ2 =
2

q2max

ln
3j1(qmaxRd)

RdqmaxF (qmax)
. (14)

Taking into account that the second moment of a convoluted distribution is given
by the sum of the second moments of the two single distributions, one gets the Helm
rms radius

RHelm
rms =

√
3
5

(R2
d + 5σ2) . (15)

Taking out the factors
√

3/5, which relate the rms radii to the radii of the equivalent
uniform hard spheres, we define

Rhs =
√

5/3 < r2 >1/2 (16)

and
RHelm =

√
5/3RHelm

rms =
√
R2
d + 5σ2 . (17)

From these definitions we construct the following neutron-proton radius differ-
ences that will be used:

ΔRd = Rd(n)−Rd(p) , (18)

ΔRhs = Rhs(n)−Rhs(p) =
√

5/3
[
< r2n >

1/2 − < r2p >
1/2
]
, (19)

ΔRHelm = RHelm(n)−RHelm(p) . (20)

3 Results

Beginning with Sn isotopes for which more data and calculations are available, we
show on the right panel of Figure 1 our results for the squared charge radii dif-
ferences in Sn isotopes obtained from three different Skyrme forces, SLy4, SG2
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Figure 1. Left panel: Charge rms radii rc of tin isotopes. The SLy4 result is compared with the
results from RMF calculations [11], HFB [10] and GCM [10]. Experimental data are from
[18–21]; Right panel: Theoretical (with different Skyrme forces) and experimental isotope
shifts δ〈r2c〉 of tin isotopes relative to 120Sn.

and Sk3. We compare them to experiment, taking the radius of 120Sn as the refer-
ence [21]. On the left panel we compare our SLy4 results for the charge radii with
the other theoretical approaches mentioned above. The general purpose of Figure 1
is firstly to show that different Skyrme forces do not differ much in their predictions
of charge rms radii and secondly, to show that our results with SLy4 are comparable
to other theoretical predictions including approaches that go beyond the mean-field
approximation, as well as relativistic approaches. We conclude that our method re-
produces the experimental data with a similar accuracy to other microscopic calcu-
lations that, as explained above, may be more sophisticated but may also be more
time consuming. This agreement provides a good starting point to make predictions
for other quantities such as neutron-proton radii differences, where the experimental
information is scarce and it is not as accurate as in the case of charge radii.

In Figure 2 we plot the differences between the rms of neutrons and protons
Δrnp = rn− rp. On the left panel we show our results for Sn isotopes and compare
them to RMF results and to experimental data. As we can see the experimental data
are located between the predictions of both theoretical approaches and in general,
there is agreement with experiment within the error bars. On the right panels we
see the predictions for Δrnp in the cases of Ni and Kr isotopes, where there are
no data. As it can be seen, the RMF results for the difference Δrnp systematically
overestimate the Skyrme HF results. The reason for this is related to the difference
in the nuclear symmetry energy and, consequently, to the different neutron equation
of state (EOS) which has been extensively studied in recent years [29–32].

Figure 3 shows the neutron (solid) and proton (dashed) densities ρ0(R) (2) in
the 100,120,136Sn isotopes. From left to right we see the evolution of these densi-
ties as we increase the number of neutrons. In the case of 100Sn (N=Z=50) we see
that the two densities are practically the same except for Coulomb effects that make
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Figure 2. Difference between neutron and proton rms radii Δrnp of Sn, Ni, and Kr isotopes
calculated with SLy4 force. The RMF calculation results are from Ref. [11]. The experimental
data for Sn isotopes measured in (p, p) reaction (open stars) [1, 2], antiproton atoms (full
stars) [3], giant dipole resonance method (full circles) [7] and spin dipole resonance method
(full and open squares) [8, 9] are also shown.

Figure 3. HF+BCS proton and neutron densities ρ0(R) of 100Sn, 120Sn, and 136Sn calculated
with SLy4 force.

the protons to be more extended and, therefore, this has to be compensated with a
small depression in the interior. The effect of adding more and more neutrons is to
populate and extend the neutron densities. This makes also the proton distribution
to follow the neutron one, increasing its spatial extension. The cost of this radius
enlargement in the case of protons is a depression in the nuclear interior to preserve
the normalization to the constant number of protons Z = 50. Then, it can be seen
graphically the emergence of a region at the surface where the protons have practi-
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cally disappeared while the neutrons still survive. We will quantify later this region
in terms of the neutron skin thickness definitions.

The thickness of a neutron skin in nuclei may be defined in different ways. One
of these possibilities is to define it as the difference between the root mean square
radius of neutrons and that of protons, as we have plotted in Figure 2. Similarly, it
can be defined as the difference between the neutron and proton radii of the equiv-
alent uniform spheres [Eq. (19)]. Alternatively, it can be defined as the difference
between the neutron and proton diffraction radii (18) or Helm radii (20).

On the other hand, the skin thickness can be also defined in terms of some cri-
teria that the neutron and proton densities must fulfill. In Ref. [13] the neutron skin
thickness is defined as the difference between two radii,R1 andR2.R1 is the radius
at which the ratio of the neutron density to the proton density is equal to some given
value (4 in [13]).R2 is the radius at which the neutron density becomes smaller than
some percentage of the density at the center of the nucleus (1 % in [13]). When this
difference,ΔR = R2−R1, is larger than some established value (in [13] this value
is 1 fm, which is comparable to the range of the nuclear force), a neutron skin with
skin thicknessΔR is said to occur. We have also considered the case where the first
criterion for the inner radius R1 of the neutron skin is changed. We use instead of
the above criterion for R1, the radius at which the proton density becomes smaller
than 1% of the latter at the center, which is similar to the criterion used to define the
outer radius R2, but in this case for proton density instead of the neutron density.
When we use the conditions in Ref. [13], we call it criterion (a). When we use the
alternative condition for R1, we call it criterion (b).

We show in Figure 4 the results obtained for the neutron skin thickness in Ni
isotopes according to the different definitions discussed above. The left panel con-
tains the results for definitions involving directly the difference between neutron and

Figure 4. Neutron skin thicknesses for Ni isotopes. Left panel: ΔRd [Eq. (18)], ΔRhs

[Eq. (19)], and ΔRHelm [Eq. (20)]; Right panel: corresponding to criterion (a) (solid line)
and criterion (b) (dotted line). A formation of proton skin thickness with the criterion (b) is
also shown.
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proton radii [Eqs. (18)-(20)]. The skin thickness predicted by the difference of the
very simple diffraction radii is in general smaller than the thickness predicted by
the other two more involved options that are very similar in this range of masses.
The right panel contains the neutron skin thickness defined according to the criteria
on the density distributions (a) (solid line) and (b) (dashed line). They only differ
in the way in which the starting radius of the skin R1 is chosen. One can see that
we obtain larger neutron skin thicknesses when using criterion (b) in the lighter
isotopes, but this is reversed for heavier isotopes and we get larger thickness when
using criterion (a).

We also consider the most neutron-deficient region of Ni isotopes in a search
for the formation of a proton skin. Reversing the definitions of R1 and R2 and ap-
plying the criterion (b) with protons and neutrons interchanged, the obtained results
are shown in the inset of the right panel in Figure 4. We find no proton skin when
applying criterion (a). One can see that a small skin starts developing in these iso-
topes but we cannot push it further because 48Ni is already at the proton drip line.
The results are then not conclusive enough to assess the existence of a proton skin
in these isotopes.

When the nucleus is deformed, the thickness of the neutron skin might depend
on the direction. It is an interesting and natural question to ask whether the de-
formed densities give rise to a different skin size in the different directions. It is
also interesting to know whether the emergence of the skin may be influenced by
the nuclear shape. We first study the intrinsic density distributions ρ(�R) in various
selected directions. For that purpose we show in Figures 5 and 6 the densities of
98Kr for oblate and prolate shapes, respectively. We can see the spatial distributions
for neutrons (solid) and protons (dotted) in three different directions: z-direction
(r = 0), r-direction (z = 0), and r = z direction. We can observe that the profiles

Figure 5. Neutron (solid line) and proton (dotted line) density distributions ρ(�R) in different
directions for oblate shape of 98Kr. The full dots shown on the (r, z) plane correspond to
radii R1 and R2 according to criterion (a).
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Figure 6. Same as in Figure 5, but for prolate shape of 98Kr.

of the densities as well as the spatial extensions change with the direction. Clearly,
the densities are more extended in the z-direction in the case of prolate shapes. The
opposite is true in the case of oblate shapes. The case r = z gives always intermedi-
ate densities. We have added in the three directions a couple of full dots, indicating
the radiiR1 andR2 that defines the skin thickness according to the above mentioned
criterion (a).

It is also worth looking at the points in the (r, z) plane that define the ellipses
where the criteria for R1 and R2 are met. Figure 7 shows these points for protons
(thin lines) and neutrons (thick lines) and for the two shapes, prolate (solid) and

Figure 7. Radii R1 and R2 according to criterion (a) for neutrons (thick lines) and protons
(thin lines) in 98Kr nucleus (shown in rz plane) corresponding to its oblate (solid lines) and
prolate (dashed lines) shape.



190 P. Sarriguren, M. K. Gaidarov, E. Moya de Guerra, and A. N. Antonov

oblate (dashed). We can see that the size of the skin changes little with the directions
perpendicular to the surface, but shows a tendency to increase on the shorter axis.
It is interesting to note that the skin size of the spherical component ρ0(R) is an
intermediate value. The overall skin thickness is also similar in the oblate and prolate
equilibrium shapes. From this example we may conclude that the skin thickness
does not depend much on the oblate or prolate character of the deformation.

4 Conclusions

For the first time the various definitions which have been previously proposed to
determine the neutron skin thickness, involving both matter radii and tails of nu-
clear densities, have been compared within a deformed Skyrme HF+BCS model.
Three Skyrme parametrizations have been involved in the calculations: SG2, Sk3
and SLy4. Most of the results shown in the paper are obtained with SLy4 force, but
the other Skyrme interactions produce similar results. We find that all definitions of
the neutron skin predict to a different extent the existence of a skin in nuclei far from
the stability line. Particularly, a pronounced neutron skin can be attributed to heavier
isotopes of the three chains considered, namely with A > 132 for Sn, A > 74 for
Ni, and A > 96 for Kr isotopes. We also find that for a given isotopic chain the
increase of the skin with the neutron number in the neutron-rich nuclei exhibits a
rather constant slope, which is different depending on the definition of nuclear skin.
More significant neutron skin is obtained when analyzing its formation by means
of definition from Ref. [13] (called criterion (a)) or using an alternative one (called
criterion (b)). In this case we get an absolute size of the skin larger than 0.4 fm
and almost reaching 1 fm for the heaviest isotopes (in the case of criterion (a)). At
the same time, the neutron skin determined by the difference between neutron and
proton radii using diffraction parameters defined in the Helm model shows a more
smooth gradual increase with the neutron excess and it is in size of around 0.3–0.4
fm.

We also show on the example of the neutron-deficient Ni isotopes the possibility
to find a proton skin in a similar way to the neutron skin. Although the analysis,
which was performed in our paper for this case, uses an alternative criterion to that
applied in [13], it indicates a situation close to proton skin formation in Ni isotopes
very close to the proton drip line. However, the search for the existence of proton
skin could be explored in the most proton-rich nuclei approaching the proton drip
lines of lighter nuclei, where Z > N .

In the present work the effects of deformation on the skin formation are studied
in Kr isotopes which are well deformed nuclei. Taking as an example 98Kr and 100Kr
isotopes, we find that the profiles of the proton and neutron densities, as well as the
spatial extensions change with the direction in both oblate and prolate shapes. At
the same time, the neutron skin thickness remains almost equal along the different
directions perpendicular to the surface. We find a very weak dependence of the
neutron skin formation on the character of deformation.
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