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Abstract. The dynamical symmetry group Sp(12, R) of the Interacting Vector Boson Model
(IVBM) is extended to the orthosymplectic group OSp(2Ω/12, R) in order to incorporate
fermion degrees of freedom. The structure of even-even nuclei is used as a core on which the
collective excitations of the neighboring odd-mass and odd-odd nuclei are build on. Hence,
the spectra of odd-mass and odd-odd nuclei arise as a result of the coupling of the fermion
degrees of freedom, specified by the fermion sector SOF (2Ω) to the boson core, whose
states belong to an Sp(12, R) irreducible representation.

The orthosymplectic dynamical symmetry is applied for the simultaneous description of
the spectra of some neighboring nuclei from rare earth region. The theoretical predictions for
different low-lying collective bands with positive and negative parity are compared with the
experiment. The obtained results reveal the applicability of the model and its boson-fermion
extension.

1 Introduction

There have been a large number of theoretical investigations concerning odd-odd
nuclei but few based on the Interacting Boson Model (IBM) [1]. The U(5), SU(3)
and O(6) dynamical symmetry limits of the IBM and the associated Bose-Fermi
symmetries of the Interacting Boson-Fermion Model (IBFM) [2] have enriched our
understanding of the structure of low-lying collective states in heavy even-even and
odd-mass nuclei respectively [1–3]. An extension of these models for odd-odd nu-
clei give rise to the Interacting Boson-Fermion-Fermion Model (IBFFM) [4,5]. With
a simple IBFFM Hamiltonian several numerical studies of odd-odd nuclei have been
caried [3,6]. However the progress in developing dynamical symmetry limits of this
model is rather slow. This is mainly because here the enumeration, understanding
the significance and establishing applicability of the various symmetry limits is not
straight forward. There are limited but significant applications of symmetry limits
of IBFFM associated with the U(5) [7], SU(3) [8] and O(6) [9] limits of IBM.

In the early 1980s, a boson-number-preserving version of the phenomenological
algebraic Interacting Vector Boson Model (IVBM) [10] was introduced and applied
successfully [11] to a description of the low-lying collective rotational spectra of the
even-even medium and heavy mass nuclei. With the aim of extending these applica-
tions to incorporate new experimental data on states with higher spins and to incor-
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porate new excited bands, we explored the symplectic extension of the IVBM [12],
for which the dynamical symmetry group is Sp(12, R). This extension is realized
from, and has its physical interpretation over basis states of its maximal compact
subgroup U (6) ⊂ Sp(12, R), and resulted in the description of various excited
bands of both positive and negative parity of complex systems exhibiting rotation-
vibrational spectra [13]. In [14] an orthosymplectic extension of the IVBM was
carried out in order to encompass the treatment of the odd-mass nuclei. With the
present work we exploit further the boson-fermion extension [14] of IVBM for the
description of the ground and first excited positive and/or negative bands of odd-
odd nuclei. Thus, it is the purpose of this paper to bring intrinsic degrees of freedom
explicitly into the symplectic IVBM. We approach the problem by considering the
simplest physical picture in which two particles (or quasiparticles) with intrinsic
spins taking a single j−value are coupled to an even-even nucleus whose states be-
long to an Sp(12, R) irrep. Nevertheless, the results for the energy spectra obtained
in this simplified version of the model agree rather well with the experimental data.

2 The Even-Even Core Nuclei

The algebraic structure of the IVBM is realized in terms of creation and annihilation
operators u+

m(α), um(α) (m = 0,±1). The bilinear products of the creation and
annihilation operators of the two vector bosons generate the boson representations
of the non-compact symplectic group Sp(12, R) [10]:

FLM (α, β) =
∑

k,m
CLM1k1mu

+
k (α)u+

m(β),

GLM (α, β) =
∑

k,m
CLM1k1muk(α)um(β), (1)

ALM (α, β) =
∑

k,m
CLM1k1mu

+
k (α)um(β), (2)

where CLM1k1m, which are the usual Clebsch-Gordon coefficients for L = 0, 1, 2 and
M = −L,−L + 1, ...L, define the transformation properties of (1) and (2) under
rotations. The commutation relations between the pair creation and annihilation op-
erators (1) and the number preserving operators (2) are given in [10].

Being a noncompact group, the unitary representations of Sp(12, R) are of infi-
nite dimension, which makes it impossible to diagonalize the most general Hamil-
tonian. When restricted to the group UB(6), each irrep of the group SpB(12, R)
decomposes into irreps of the subgroup characterized by the partitions [12, 15]:

[N, 05]6 ≡ [N ]6,

where N = 0, 2, 4, . . . (even irrep) or N = 1, 3, 5, . . . (odd irrep). The subspaces
[N ]6 are finite dimensional, which simplifies the problem of diagonalization. There-
fore the complete spectrum of the system can be calculated through the diagonaliza-
tion of the Hamiltonian in the subspaces of all the unitary irreducible representations
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(UIR) of U(6), belonging to a given UIR of Sp(12, R), which further clarifies its
role of a group of dynamical symmetry.

The Hamiltonian, corresponding to the unitary limit of IVBM [12]

Sp(12, R) ⊃ U(6) ⊃ U(3)⊗ U(2) ⊃ O(3) ⊗ (U(1)⊗ U(1)), (3)

expressed in terms of the first and second order invariant operators of the different
subgroups in the chain (3) is [12]:

H = aN + bN2 + α3T
2 + β3L

2 + α1T
2
0 . (4)

H (4) is obviously diagonal in the basis

| [N ]6; (λ, μ);KLM ;T0〉 ≡ | (N,T );KLM ;T0〉, (5)

labelled by the quantum numbers of the subgroups of the chain (3). Its eigenvalues
are the energies of the basis states of the boson representations of Sp(12, R):

E((N,T ), L, T0) = aN + bN2 + α3T (T + 1)
+ β3L(L+ 1) + α1T

2
0 . (6)

The construction of the symplectic basis for the even IR of Sp(12, R) is given in
details in [12]. The Sp(12, R) classification scheme for the SU(3) boson represen-
tations for even value of the number of bosons N is shown on Table I in Ref. [12]
(see also Table 1).

The most important application of the UB(6) ⊂ SpB(12, R) limit of the theory
is the possibility it affords for describing both even and odd parity bands up to very
high angular momentum [12]. In order to do this we first have to identify the exper-
imentally observed bands with the sequences of basis states of the even Sp(12, R)
irrep (Table 1). As we deal with the symplectic extension we are able to consider all
even eigenvalues of the number of vector bosons N with the corresponding set of
T−spins, which uniquely define the SUB(3) irreps (λ, μ). The multiplicity index
K appearing in the final reduction to the SO(3) is related to the projection of L
on the body fixed frame and is used with the parity (π) to label the different bands
(Kπ) in the energy spectra of the nuclei. For the even-even nuclei we have defined
the parity of the states as πcore = (−1)T [12]. This allowed us to describe both
positive and negative bands.

Further, we use the algebraic concept of “yrast” states, introduced in [12]. Ac-
cording to this concept we consider as yrast states the states with given L, which
minimize the energy (6) with respect to the number of vector bosons N that
build them. Thus the states of the ground state band (GSB) were identified with
the SU(3) multiplets (0, μ) [12]. In terms of (N,T ) this choice corresponds to
(N = 2μ, T = 0) and the sequence of states with different numbers of bosons
N = 0, 4, 8, . . . and T = 0 (and also T0 = 0). Hence the minimum values of the
energies (6) are obtained at N = 2L.

The presented mapping of the experimental states onto the SU(3) basis states,
using the algebraic notion of yrast states, is a particular case of the so called
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Figure 1. Comparison of the theoretical and experimental energies for the ground and first
excited bands of 156Gd, 172Yb and 162Dy core nuclei.

”stretched” states [16]. The latter are defined as the states with (λ0 + 2k, μ0) or
(λ0, μ0 + k), where Ni = λ0 + 2μ0 and k = 0, 1, 2, 3, . . ..

It was established [17] that the correct placement of the bands in the spectrum
strongly depends on their bandheads configuration, and in particular, on the min-
imal or initial number of bosons, N = Ni, from which they are built. The latter
determines the starting position of each excited band.

Thus, for the description of the different excited bands, we first determine the
Ni of the band head structure and develop the corresponding excited band over the
stretched SU(3) multiplets. This corresponds to the sequence of basis states with
N = Ni, Ni + 4, Ni + 8, . . . (ΔN = 4). The values of T for the first type of
stretched states (λ−changed) are changed by step ΔT = 2, whereas for the second
type (μ−changed) −T is fixed so that in both cases the parity is preserved even or
odd, respectively. For all presented even-even nuclei, the states of the corresponding
β− and γ− bands are associated with the stretched states of the first type (λ−
changed).

To describe the structure of odd-mass and odd-odd nuclei, first a description of
the appropriate even-even cores should be obtained. Thus, we determine the values



Boson and Fermion Degrees of Freedom in the Orthosymplectic Extension... 159

of the five phenomenological model parameters a, b, α3, β3, α1 by fitting the ener-
gies of the ground and few excited bands (γ− and/or β− bands) of the even-even
nuclei to the experimental data [18], using a χ2 procedure. The theoretical predic-
tions for the even core nuclei are presented in the Figure 1. For comparison, the
predictions of IBM (with 4 adjustable parameters) are also shown. The IBM results
for 156Gd and 162Dy, 172Y b are extracted from Refs. [19] and [20], respectively.
From the figure one can see that the calculated energy levels agree rather well up
to very high angular momenta with the observed data. One can see also that for
high spins (L ≥ 10 − 14), where the deviations of the IBM predictions become
more significant, the structure of the energy levels of the GSB (β− and γ−bands)
is reproduced rather well.

3 Fermion Degrees of Freedom

In order to incorporate the intrinsic spin degrees of freedom into the symplectic
IVBM, we extend the dynamical algebra of Sp(12, R) to the orthosymplectic al-
gebra of OSp(2Ω/12, R) [14]. For this purpose we introduce a particle (quasipar-
ticle) with spin j and consider a simple core plus particle picture. Thus, in addi-
tion to the boson collective degrees of freedom (described by dynamical symme-
try group Sp(12, R)) we introduce creation and annihilation operators a†m and am
(m = −j, . . . , j), which satisfy the anticommutation relations

{a†m, a
†
m′} = {am, am′} = 0,

{am, a†m′} = δmm′ . (7)

All bilinear combinations of a+
m and am′ , namely

fmm′ = a†ma
†
m′ , m �= m′

gmm′ = amam′ , m �= m′; (8)

Cmm′ = (a†mam′ − am′a†m)/2 (9)

generate the (Lie) fermion pair algebra of SOF (2Ω). Their commutation relations
are given in [14]. The number preserving operators (9) generate maximal compact
subalgebra of SOF (2Ω), i.e. UF (Ω). The upper (lower) script B or F denotes the
boson or fermion degrees of freedom, respectively.

3.1 Fermion dynamical symmetries

As can be seen from (9) the full number conserving symmetry of a fermion of spin j
isUF (2j+1). In general, the full dynamical algebra build from all bilinear combina-
tions (9), (8) of creation and annihilation fermion operators is the SO(2Ω) algebra
(for a multilevel caseΩ =

∑
j(2j+1)). One can further construct a certain fermion

dynamical symmetry, i.e. the group-subgroup chain:
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SO(2Ω) ⊃ G′ ⊃ G′′ ⊃ . . . . (10)

In particular we are interested in the following dynamical symmetry:

SOF (2Ω) ⊃ Sp(Ω) ⊃ SUF (2), (11)

where Sp(2j + 1) is the compact symplectic group. For one particle occupying a
single level j, (11) takes the form

SOF (2Ω) ⊃ Sp(2j + 1) ⊃ SUF (2). (12)

The dynamical symmetry (12) remains valid and for the case of two particles occu-
pying the same level j. In this case, the allowed values of the quantum numbers I of
SU(2) in (12) according to reduction rules are I = 0, 2, . . . , 2j − 1 [21]. If the two
particles occupy different levels j1 and j2 of the same or different major shell(s),
one can consider the chain

SO(2Ω) ⊂ U(Ω)
↗ U(Ω1) ⊂ Sp(2j1 + 1) ⊂ SUI1(2)↘

SUF (2)
↘ U(Ω2) ⊂ Sp(2j2 + 1) ⊂ SUI2(2)↗

(13)

where Ω = Ω1 + Ω2. We want to point out that although the final group SUF (2)
that appears in the chain (13) is the same as in (12), its content is different. Here the
values of the common fermion angular momentum I are determined by the vector
sum of the two individual spins I1 and I2, respectively. Nevertheless, for simplicity
hereafter we will use just the reduction SO(2Ω) ⊂ SUF (2) (i.e. dropping all in-
termediate subgroups between SO(2Ω) and SUF (2)) and keep in mind the proper
content of the set of I values for one and/or two particles cases, respectively.

3.2 Bose-Fermi symmetry

Ones the fermion dynamical symmetry is determined further the Bose-Fermi sym-
metries can be considered (constructed). If a fermion is coupled to a boson system
having itself a dynamical symmetry (e.g., such as an IBM core), the full symmetry
of the combined system isGB⊗GF . Bose-Fermi symmetries occur if at some point
the same group appears in both chains

GB ⊗GF ⊃ GBF , (14)

i.e. the two subgroup chains merge into one. It should be noted that (14) is true
only for the diagonal subgroup GB ⊗ GF , i.e. the one in which the two group
elements multiplied directly are parametrized by the same parameters. In this way
Bose-Fermi symmetry not only constrains parameters by the choice of particular
subgroup chains in the boson and fermion sectors, but also specifies the interaction
between the two.
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4 Dynamical Supersymmetry

The standard approach to supersymmetry in nuclei (dynamical supersymmetry) is
to embed the Bose-Fermi subgroup chain of GB ⊗ GF into a larger supergroup G,
i.e. G ⊃ GB ⊗GF . It is our intention in this paper to do that for chains describing
odd-odd nuclei.

Making use of the embedding SUF (2) ⊂ SOF (2Ω) and considerations from
the proceeding section, we make orthosymplectic (supersymmetric) extension of the
IVBM which is defined through the chain [14]:

OSp(2Ω/12, R) ⊃ SOF (2Ω) ⊗ SpB(12, R)
⇓

⇓ ⊗ UB(6)
N
⇓

SUF (2) ⊗ SUB(3)⊗ UBT (2)
I (λ, μ)⇐⇒ (N,T )

↘ ⇓
⊗ SOB(3)⊗ U(1)

L T0

⇓
SpinBF (3) ⊃ SpinBF (2),
J J0

(15)

where bellow the different subgroups the quantum numbers characterizing their ir-
reducible representations are given. Here by SpinBF (n) (n = 2, 3) is denoted the
universal covering group of SO(n).

In the next section we expand the earlier application of the IVBM, developed for
the description of the collective bands of even-even [12] and odd-mass [14] nuclei,
in order to include in our considerations the case of odd-odd nuclei.

5 The Energy Spectra of Odd-Mass and Odd-Odd Nuclei

We can label the basis states according to the chain (15) as:

| [N ]6; (λ, μ);KL; I; JJ0;T0 〉 ≡ | [N ]6; (N,T );KL; I; JJ0;T0 〉, (16)

where [N ]6− is theU(6) labeling quantum number, (λ, μ)− are the SU(3) quantum
numbers characterizing the core excitations,K is the multiplicity index in the reduc-
tion SU(3) ⊂ SO(3), L is the core angular momentum, I−the intrinsic spin of an
odd particle (or the common intrinsic spin of two particles for the case of odd-odd
nuclei), J, J0 are the total (coupled boson-fermion) angular momentum and its third
projection, and T ,T0 are the T−spin and its third projection, respectively. Since the
SO(2Ω) label is irrelevant for our application, we drop it in the states (16).
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The Hamiltonian can be written as linear combination of the Casimir operators
of the different subgroups in (15):

H = aN + bN2 + α3T
2 + β′3L

2 + α1T
2
0 + ηI2 + γ′J2 + ζJ2

0 (17)

and it is obviously diagonal in the basis (16) labeled by the quantum numbers of
their representations. Then the eigenvalues of the Hamiltonian (17), that yield the
spectrum of the odd-mass and odd-odd systems are:

E(N ;T, T0;L, I; J, J0) = aN + bN2 + α3T (T + 1) + β′3L(L+ 1) + α1T
2
0

+ηI(I + 1) + γ′J(J + 1) + ζJ2
0 . (18)

We note that only the last three terms of (17) come from the orthosymplectic exten-
sion. We choose parameters β′3 = 1

2β3 and γ′ = 1
2γ instead of β3 and γ in order to

obtain the Hamiltonian form of Ref. [12] (setting β3 = γ), when for the case I = 0
(hence J = L) we recover the symplectic structure of the IVBM.

The infinite set of basis states classified according to the reduction chain (15)
are schematically shown in Table 1. The fourth and fifth columns show the SOB(3)
content of the SUB(3) group, given by the standard Elliott’s reduction rules [22],
while in the next column are given the possible values of the common angular mo-
mentum J , obtained by coupling of the orbital momentum L with the spin I . The
latter is vector coupling and hence all possible values of the total angular momen-
tum J should be considered. For simplicity, only the maximally aligned (J = L+I)
and maximally antialigned (J = L− I) states are illustrated in Table 1.

The basis states (16) can be considered as a result of the coupling of the orbital
| (N,T );KLM ;T0〉 (5) and spin φj≡I,m wave functions. Then, if the parity of the
single particle is πsp, the parity of the collective states of the odd−A nuclei will be
π = πcoreπsp [14]. Analogously, one can write π = πcoreπsp(1)πsp(2) for the case
of odd-odd nuclei. Thus, the description of the positive and/or negative parity bands
requires only the proper choice of the core band heads, on which the corresponding
single particle(s) is (are) coupled to, generating in this way the different odd−A
(odd-odd) collective bands.

Further in the present considerations, the yrast conditions yield relations be-
tween the number of bosons N and the coupled angular momentum J that charac-
terizes each collective state. For example, the collective states of the GSBKπ

J = 3
2

−

are identified with the SU(3) multiplets (0, μ) which yield the sequence N =
2(J − I) = 0, 2, 4, . . . for the corresponding values J = 3

2 ,
5
2 ,

7
2 , .... The T−spin

for the SU(3) multiplets (0, μ) is T = 0 and hence πcore = (−1)T = (+). Here it
is assumed that the single particle has j ≡ I = 3/2 and parity πsp = (−), so that
the common parity π is also negative.

For the description of the different excited bands, we first determine the Ni of
the band head structure and then we map the states of the corresponding band onto
the sequence of basis states with N = Ni, Ni + 2, Ni + 4, . . . (ΔN = 2) and
T = even = fixed or T = odd = fixed, respectively. This choice corresponds to
the stretched states of the second type (μ−changed).
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Table 1. Classification scheme of basis states (16) according the decompositions given by the
chain (15).

N T (λ, μ) K L J = L± I

0 0 (0, 0) 0 0 I

2 1 (2, 0) 0 0, 2 I ; 2 ± I

0 (0, 1) 0 1 1 ± I

2 (4, 0) 0 0, 2, 4 I ; 2 ± I ; 4 ± I

4 1 (2, 1) 1 1, 2, 3 1 ± I ; 2 ± I ; 3 ± I

0 (0, 2) 0 0, 2 I ; 2 ± I

3 (6, 0) 0 0, 2, 4, 6 I ; 2 ± I ; 4 ± I ; 6 ± I

2 (4, 1) 1 1, 2, 3, 4, 5
1 ± I ; 2 ± I ; 3 ± I ;
4 ± I ; 5 ± I

6 1 (2, 2) 2 2, 3, 4 2 ± I ; 3 ± I ; 4 ± I

0 0, 2 I ; 2 ± I

0 (0, 3) 0 1, 3 1 ± I ; 3 ± I

4 (8, 0) 0 0, 2, 4, 6, 8
I ; 2 ± I ; 4 ± I ;
6 ± I ; 8 ± I

3 (6, 1) 1 1, 2, 3, 4, 5, 6, 7
1 ± I ; 2 ± I ; 3 ± I ;
4 ± I ; 5 ± I ; 6 ± I ;
7 ± I ; 8 ± I

2 (4, 2) 2 2, 3, 4, 5, 6
2 ± I ; 3 ± I ; 4 ± I ;
5 ± I ; 6 ± I

8 0 0, 2, 4 I ; 2 ± I ; 4 ± I

1 (2, 3) 2 2, 3, 4, 5 2 ± I ; 3 ± I ; 4 ± I ; 5 ± I

0 1, 3 1 ± I ; 3 ± I

0 (0, 4) 0 0, 2, 4 I ; 2 ± I ; 4 ± I

...
...

...
...

...
...

The number of adjustable parameters needed for the complete description of the
collective spectra of the odd-A and odd-odd nuclei is three, namely γ, ζ and η. They
are evaluated by a fit to the experimental data [18] of the GSB of the corresponding
odd-A and odd-odd nucleus, respectively.

The odd-A nuclei 157Gd, 173Y b and 163Dy can be considered as a neutron parti-
cle coupled to the even-even cores 156Gd, 172Y b and 162Dy, respectively. The com-
parison between the experimental spectra for the GSB and first few excited bands
and our calculations for the nuclei 157Gd, 173Y b and 163Dy is illustrated in Figure 2.
The last single particle for all of these rare earth nuclei occupies the major shell
N = 82−126, where the relevant single particle levels are 2f 7

2
, 2f 5

2
, 3p 3

2
, 3p 1

2
hav-

ing odd parity (πsp = −) (excluding the intruder from the upper shell with opposite
parity). In our considerations we take into account only the first available single par-
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Figure 2. Comparison of the theoretical and experimental energies for the ground and first
excited positive and/or negative parity bands of 157Gd, 173Yb and 163Dy odd-mass nuclei.

ticle orbit j1 (generating the groups SO(2Ω1) and/or U(Ω1) with Ω1 = (2j1 + 1)),
which for the first nucleus implies j1 = 3

2 , while for the other two − j1 = 5
2 . The

Nilsson asymptotic quantum numbersΩ[Nn3Λ] are written bellow each band. One
can see from the figure that the calculated energy levels agree rather well in general
with the experimental data up to very high angular momenta. For comparison, in
the Figure 2 the IBFM results (obtained by total 7 adjustable parameters) are also
shown. They are extracted from Refs. [19] and [20], respectively. Note that all cal-
culated levels, for the bands considered, are in correct order in contrast to IBFM
results (for 157Gd). Another difference between the IVBM and IBFM predictions
is that in the former the correct placement of all the band heads is reproduced quite
well.

For the calculation of the odd-odd nuclei spectra a second particle should be
coupled to the core. In this paper we present results for the three odd-odd nuclei,
namely 158Tb, 164Ho and 174Lu. In our calculations a consistent procedure is em-
ployed which includes the analysis of the even-even and odd-even neighbors of the
nucleus under consideration. Thus, as a first step an odd neutron was coupled to the
boson core in order to obtain the spectra of the odd-mass neighbors 157Gd, 173Y b
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Figure 3. Comparison of the theoretical and experimental energies for the ground and first
excited positive and/or negative parity bands of 164Ho, 158Tb and 174Lu odd-odd nuclei.

and 163Dy. As a second step, we consider an addition of a proton to the boson-
fermion system. For the considered mass region, the relevant single particle levels
for the proton are 2d 5

2
, 2d 3

2
, 1g 7

2
, 3s 1

2
of the major shellN = 50−82 with even par-

ity (πsp = +). In the calculations we take into account also only the first available
level j2 for the proton particle. Thus, we obtain the observed GSB’s: Kπ = 3−,
Kπ = 1+ and Kπ = 1− for the 158Tb, 164Ho and 174Lu, respectively. For ex-
ample, the Kπ = 3− GSB of 158Tb is obtained considering In = 3

2 and Ip = 3
2

coupled to I = 3. Analogously, one can obtain the GSB for the other two nuclei
considering In = 5

2 ,Ip = 3
2 and In = 5

2 ,Ip = 7
2 for the 164Ho and 174Lu, respec-

tively. The theoretical prediction for the ground and first excited bands for the three
odd-odd nuclei are presented in Figure 3. They are compared with the experimental
data. From the figure one can see the good overall agreement between the theory
and the experiment which reveals the applicability of the boson-fermion extension
of the model.
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6 Conclusions

In this paper the orthosymplectic extension of the IVBM was applied for the de-
scription of the low-lying spectra of odd-odd nuclei. For this purpose, the fermion
dynamical symmetries and corresponding combined Bose-Fermi symmetries were
considered in much more details.

The basis states of the odd-mass and odd-odd systems are classified by the dy-
namical symmetry (15) and the model Hamiltonian is written in terms of the first
and second order invariants of the groups from the corresponding reduction chain.
Hence the problem is exactly solvable within the framework of the IVBM which, in
turn, yields a simple and straightforward application to real nuclear systems.

The structure of some odd-odd nuclear spectra has been investigated in the
framework of the IVBM. The even-even nuclei are used as a core on which the
collective excitations of the neighboring odd-mass and odd-odd nuclei are build
on. Thus, the spectra of odd-mass and odd-odd nuclei arise as a result of the cou-
pling of the fermion degrees of freedom to the boson core. The good agreement
between the theoretical and the experimental band structures confirms the appli-
cability of the used dynamical symmetry of the IVBM. The success is based on
the (ortho)symplectic structures of the model which allow the mixing of the basic
collective modes−rotational and vibrational ones arising from the yrast conditions.
This allows for the proper reproduction of the high spin states of the collective bands
and the correct placement of the different band heads.

The supersymmetry group OSp(2Ω/12, R) could be further used to examine
the nuclear supersymmetry which might be considered in nuclear physics as proved
experimentally [23]. The model can be also used for the description and systematics
of other collective bands. More extensive calculations, including calculations for
more extended series of isotopes should provide a more stringent test of the model.
Critical phase/shape phenomena can also be analyzed within the model. They may
also help us to develop a better understanding of the physical correspondences to
the IVBM group-theoretical parameters.
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