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Abstract. We investigate systematically the behavior of the energies of collective states from
the ground and octupole bands of the deformed even-even lanthanides, which are described
very accurately by the U(6) ⊃ U(3) ⊗ U(2) ⊃ SO(3) dynamical symmetry of the sym-
plectic extension to Sp(12, R) of the Interacting Vector Boson Model. Our approach is based
on the assumption that the phenomenological parameters of the Hamiltonian, obtained for
each individual nucleus, should reflect the dependence of the energies on the nuclear charac-
teristics including, especially, the dependence on number of neutrons N and protons Z that
build it. Hence we employ a two-step fitting procedure. First we fit the parameters of the
Hamiltonian as first or second order polynomials in the changing values ofN for the isotopic
chains (fixed Z) of the deformed Nd, Sm, Gd, Dy, Er, Yb and Hf nuclei. The next step is to
approximate each of the polynomial coefficients obtained with their uncertainties by a linear
regression with respect to the number of valence protons Z. As a result we obtain a unified
expression for the energies of the ground and octupole bands for the deformed nuclei in the
rare earth region. This allows us to relate the phenomenological parameters of the Hamil-
tonian to the fundamental nuclear structure and to interpret the development of collectivity
across the broad region of nuclei that we explore.

1 Introduction

Algebraic models like the IBM [1], which are based on the symmetry principles,
have proven themselves appropriate for the description of a large amount of data [2]
on nuclear structure. Even more, they have established benchmarks for understand-
ing the evolution of the nuclear structure [3] and have developed the necessary tech-
nique for the description of the sometimes sharp (phase/shape) transitions from one
to another collective mode [4]. Nevertheless, along the way some of the beauty
and simplicity of the group theoretical approach to the nuclear structure problems
is somewhat lost and mainly geometrical considerations in terms of the collective
model’s [4, 5] variables are advanced.

In the early eighties, a boson number preserving version of the phenomeno-
logical algebraic Interacting Vector Boson Model /IVBM/ [6] was successfully ap-
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plied [7] for a description of the low-lying collective rotational spectra of the even-
even medium and heavy mass nuclei. With an aim to extend these application in
order to incorporate the new experimental data on the states with higher spins and
on the various new excited bands, we explore the symplectic extension of the IVBM,
for which the group of dynamical symmetry is the Sp(12, R). The extension is re-
alized and has its physical interpretation over the basis of its maximal compact sub-
group U (6) ⊂ Sp(12, R). This naturally leads to an additional description [8] of
not only the energies, but of the staggering effects between the states of the ground
and octupole bands up to very high spins.

In this particular limiting case, as well as in the other two dynamical symmetry
limits [9, 10] of the symplectic extension of the IVBM, we obtain exact analytic
solutions for the eigenvalues of the Hamiltonian, expressed in terms of the first and
second order Casimir invariants of the subgroups in the respective chain, in the basis
labelled by the quantum numbers of their irreducible representations. To advantage
this further, we also use in the applications the possibility of changing the number of
phonons building the collective states and as a consequence gain larger basis spaces
that incorporate more and more complex nuclear spectra. In practice the applications
for a description of nuclear collective spectra is achieved by a fit of the parameters of
the model Hamiltonian to the experimental energies of each nucleus considered. An
obvious drawback of this phenomenological approach, is that the results obtained
do not contain any specific dependence on the individual nuclear characteristics. In
other words, we have a set of model parameters for each nucleus. Hence the aim of
the preliminary results that we present in this talk is to investigate the behavior of
the phenomenological parameters for a sequence of nuclei and to establish if they
reflect some dependence on a specific characteristic of the nuclear structure.

2 Description of the Ground and Octupole Bands in the Unitary
Limit of the IVBM

First we describe the algebraic structure of the IVBM, which is realized in terms
of creation (annihilation) operators, u+

m(α)(um(α)), in a 3- dimensional oscillator
potential (m = 0,±1) of two types of bosons differing by the value of the ”T-spin”
projection α = 1/2(p), α = −1/2(n). The bilinear products of the creation and
annihilation operators of the two vector bosons generate the boson representations
of the non-compact symplectic group Sp(12, R) [6]. The set of operators:

ALM (α, β) =
∑

k,m
CLM1k1mu

+
k (α)um(β), (1)

where CLM1k1m are the usual Clebsch-Gordon coefficients for L = 0, 1, 2 and M =
−L,−L + 1, ...L, define their transformation properties under rotations and close
under commutation the algebra of the maximal compact subgroup of Sp(12, R) ⊃
U (6) [11]. The linear invariant of U(6) is the number operator,

Nb =
√

3(A0(p, p) + A0(n, n)) = N+ +N−, (2)
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that counts the total number of bosons. Hence this operator (2) splits the boson rep-
resentations of Sp(12, R) into a countless number of symmetric unitary irreducible
representations (UIR) of the type [Nb, 0, 0, 0, 0, 0] = [Nb]6, where Nb = 0, 2, 4, ...
for the even UIR and Nb = 1, 3, 5, ... for the odd ones.

In this work we investigate the behavior of the free parameters a, b, α3, α1 and
β3 of the Hamiltonian:

H = aNb + bN2
b + α3T

2 + β3L
2 + α1T

2
0 , (3)

which is constructed by the first and second order invariants of the subgroups of the
“unitary” limit of the symplectic Sp(12, R),

U(6) ⊃ SU(3)⊗ U(2) ⊃ SO(3)⊗ U(1) (4)

[Nb] (λ, μ) (N,T ) K L T0, (5)

where the quantum numbers (5) of the U(6)-basis that is used are given below each
of the subgroups of the chain (4). The first two terms in (3) are related to the U(6)
invariants, and the L2 term is the second-order invariant of the SO(3) group of the
angular momentum L. Since SU(3) and U(2) in (4) are mutually complementary
groups, their Casimir invariants are related and we don’t include C2(SU(3)) in the
Hamiltonian, but rather only C2(SU(2)) ∼ T 2 of the important group of the T−
spin.

The quantum numbers of SU(3) and U(2) are related in the following way:

T =
λ

2
, N = 2μ+ λ, (6)

so we can write the basis as | [Nb]6; (λ, μ);K,L,M ;T0〉 =| (Nb, T );K,L,M ;T0〉.
The ground state of the system is the vacuum state |0〉 with Nb = 0, T = 0,K =
0, L = 0,M = 0, T0 = 0. The basis states associated with the even irreducible rep-
resentation of the Sp(12, R) can be constructed by the application on it of even pow-
ers, given byNb of the creation operators u+

m(α) [12]. Therefore the complete spec-
trum of the system is calculated through the diagonalization of the Hamiltonian in
the subspaces of all the UIR ofU(6), belonging to a given UIR of Sp(12, R), which
solves the problem of dealing with noncompact representations. Then the possible
values for the T−spin for each fixed value of Nb-even are T = Nb

2 ,
Nb

2 − 1, . . .
0. Thus when Nb and T are fixed, 2T + 1 equivalent representations of the group
SU(3) arise, for which λ and μ are obtained from (6). Each of them is labelled by
the eigenvalues of the operator T0 : −T,−T + 1, . . . , T . The usefulness of obtain-
ing the SU(3) representations (λ, μ) lies in the availability of the standard reduction
rules for the SU(3) ⊃ SO(3) chain. The multiplicity index K appearing in this re-
duction (5) is related to the projection of L in the body fixed frame [13] and is used
with the parity (π) to label the different bands (Kπ) in the energy spectra of the
nuclei. We define the parity of the states as π = (−1)T , which allows us to describe
both positive and negative bands. The Hamiltonian (3) is obviously diagonal in the
basis labelled by the quantum numbers of the subgroups of the chain (4).
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3 Application to Real Nuclear Spectra

A successful application of the theory requires a correct identification of the ex-
perimentally observed bands with the sequences of basis states for the even repre-
sentation of Sp(12, R). In [8] for the description of the ground band, which starts
with the vacuum state |0〉, we used the basis states with L = 0, 2, 4, 6, . . . created
with Nb = 0, 4, 8, . . . bosons with T = 0, (λ = 0) and T0 = 0, which correspond
according to (6) to the sequence of SU(3) multiplets (0, μ = Nb/2). While for the
octupole band we have the following identification for its states with L = 3, 5, 7, . . .
and negative parity T = 1, (λ = 2) ; T0 = 0 and Nb = 8, 12, ..., which means that
the SU(3) multiplets (2, μ−1) are used. Further we define the energies of each state
with given L as yrast energy with respect toNb in the two considered bands. Hence,
taking into account the reduction rules [8], their minimum values are obtained at
Nb = 2L for the ground band, andNb = 2L+2 for the octupole band, respectively.

According to the correspondence identified above the employed basis states have
T0 = 0 and the last term in the Hamiltonian (3) vanishes. Its eigenvalues give the
energies of the collective states of ground state band /gsb/ as:

Eg(L) = (2a− 4b)L+ (4b+ β3)L(L+ 1) , (7)

and for the octupole band as:

Eo(L) = (2a+ 4b)L+ (4b+ β3)L(L+ 1) + (2a+ 4b+ 2α3) . (8)

From (7) and (8), it can be seen that the eigenvalues of states of the first positive
and negative bands mix the rotational L(L+ 1) and vibrational L collective modes.
The rotational interaction is with equal strength (4b+ β3) in both of the bands. For
the octupole band there is an additive constant that is the only dependent on the
parameter α3.

Further the application to real nuclear systems is realized by means of the eval-
uation of the phenomenological model parameters a, b, α3, and β3 by a fit to the
experimental data [14]. Hence we obtain for each of the considered nuclei a set of
these four parameters of the Hamiltonian, which according to (7) and (8) reproduce
very accurately the energies in their ground and octupole bands up to rather high
spins [8].

4 Dependence of the Parameters on the Nuclear Characteristics

As mentioned above, a drawback of our model approach is that although the descrip-
tion of the collective bands we obtain is very good, the model parameters are fit for
each nucleus and there is no dependence in them on the specific nuclear characteris-
tics. In the present case the quantum numbers that define the states depend upon the
chosen dynamical symmetry and as a consequence the result are directly linked to
that symmetry limit, and therefore should not be subject to a broader interpretation
as is typically done, for example, within an IBM framework. In order to overcome
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this apparent model dependency and to establish that the parameters of the theory
are linked to the nuclear structure, we must systematically investigate the behavior
of the parameters for a sequence of nuclei. For this purpose we start with the col-
lection of the experimental data on the energies of the ground and octupole bands in
the heavy nuclear systems, and specifically for rare-earth and actinide nuclei [14].
For present purposes, we selected nuclei for which there are at least 3 states that are
known experimentally in the ground band as well as in the first negative parity band,
so as to have good statistics in evaluating the four parameters of the Hamiltonian.
While the actinides are better investigated and the observed bands longer [15, 16],
the data on the lanthanides is richer with respect to the number of isotopic chains for
which data is available and correspondingly there is more relevant information on
their deformation and geometric shapes. Hence in this work, we presents and discuss
a systematic study of the behavior of the Hamiltonian parameters in the following
isotopic chains of the lanthanides:60Nd withN = 84−92; 62Sm withN = 84−94;
64Gd with N = 88− 96; 66Dy with N = 90− 96; 68Er with N = 90− 100; 70Yb
with N = 86− 104 and 72Hf with N = 86− 100.

We start by plotting the values of the four hamiltonian parameters a, b, β3 and
α3 for each of the isotopic chains (fixed Z) as functions of the number of neutrons
N , denoted by shapes on the Figures: 1, 2, 3 and 4. Although in the isotopic chains
considered we have different change ranges of the number of neutronsN , there are
rough features of the behavior of the parameters that can be clearly observed and
analyzed. First of all the changes in the parameters a, b and β3 are very similar in
all isotopic chains, being relatively small and smooth which stands in contrast to the
rather sharp increase with N in the value of α3.

Figure 1. Behavior of the parameters a, b, α3, and β3 of the energies of the ground and
octupole bands and their approximation with linear and polynomial functions of the changing
values of N for the isotopic chains of the Nd and Sm.
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Figure 2. Same as on Figure 1 for the isotopic chains of the Gd and Dy.

Figure 3. Same as on Figure 1 for the isotopic chains of the Er and Yb.

The observed changes in the parameters within the isotopic chains as a function
of the number of the neutrons in the nucleus gives us an opportunity to approximate
them with functions of N in the following way:

a(N) = A0 +A1N +A2N
2; b(N) = B0 +B1N ; (9)

β3(N) = C0 + C1N ; α3(N) = D0 +D1N +D2N
2 (10)

Hence b and β3 are linear functions of N and a and α3 are second order polyno-
mials. We realize that the approximations with smooth functions will not reflect the
sometimes sharp changes in the parameters. A particularly illustrative example are
these changes for α3 between N = 88 and N = 90, which are well-known [17] as
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Figure 4. Same as on Figure 1 for the isotopic chain of the Hf.

regions of nuclei at critical points. This critical behavior is reflected in the octupole
band, as can be seen for the Nd, Sm and Y b isotopes on Figures 1 and 3.

In the chosen approximations (9) and (10) for the parameters we obtain in
the first fitting procedure the respective coefficients Ai, i = 0, 1, 2, Bi, i = 0, 1,
Ci, i = 0, 1 and Di, i = 0, 1, 2 and their uncertainties. Then on the panels (i chang-
ing) of Figures 5, 6, 7 and 8 we plot each of the values obtained for the isotopic
chains considered, that is, Z changing from 60 to 72. While a quick look would
suggest there is no systematic behavior among the coefficients, with at most simply
a change of the scale with the degree of N noted, on closer scrutiny one can see
from a straight-line interpolation through the points that there is a staggering about
such linearity that depends upon whether Z/2 is even or odd.This can be related to
the staggering of the energies of ground band states in even-even nuclei [18], but
there needs to be more careful investigation of the phenomena. In this situation,
changes in these parameters as a function of Z is not simple, but taking into account
relatively short range changes in the parameters it makes sense to do the simplest
linear approximation in Z (doted lines on Figures 5, 6, 7 and 8) as follows:

Ai(Z) = +Ai0 +Ai1Z Bi(Z) = +Bi0 +Bi1Z (11)

Ci(Z) = +Ci0 + Ci1Z Bi(Z) = +Bi0 +Bi1Z (12)

So, in the second fitting procedure we evaluated the values of the parameters
Aik, i = 0, 1, 2, Bik, i = 0, 1, Cik, i = 0, 1 and Dik, i = 0, 1, 2 for k = 0, 1 (20 in
total) in expressions (11) and (12) and their uncertainties. The values we obtained
are given in Tables 1, 2, 3 and 4.
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Figure 5. Behavior of the coefficientsAi, i = 0, 1, 2 in the expression for the parameter a(N)
(left of (9)) and their linear approximations as functions of Z.

Figure 6. Same as on Figure 5 for the coefficients Bi, i = 0, 1 for the parameter a(N) (right
of (9)).

Figure 7. Same as on Figure 5 for the coefficients Ci, i = 0, 1 for the parameter β3(N) (left
of (10)).
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Figure 8. Same as on Figure 5 for the coefficientsDi, i = 0, 1 for the parameter α3(N) (right
of (10)).

5 Results and Discussion

As a result of our empirical study of the behavior of the Hamiltonian parameters in
the isotopic chains of deformed even-even rare earth nuclei, we obtain the following
general expressions for them as a function of the number of protons Z and neutrons
N in each nuclear species:

a(N,Z) = A00 +A01Z +(A10 +A11Z)N +(A20 +A21Z)N2,
b(N,Z) = B00 +B01Z +(B10 +B11Z)N ,
β3(N,Z) = C00 + C01Z +(C10 + C11Z)N ,
α3(N,Z) = D00 +D01Z +(D10 +D11Z)N +(D20 +D21Z)N2.

(13)

Introducing these values into the expressions for the energy functions of the ground
and octupole bands (7) and (8) we describe the energies of 423 states of 43 nuclei

Table 1. Aik, i = 0, 1, 2; k = 0, 1

A00 ΔA00 A01 ΔA01

101.81988 93.85576 -1.40442 1.42632

A10 ΔA10 A11 ΔA11

-2.20426 2.0675 0.03052 0.03142

A20 ΔA20 A21 ΔA21

0.01715 0.0195 -2.23382E-4 2.96385E-4

Table 2. Bik, i = 0, 1; k = 0, 1

B00 ΔB00 B01 ΔB01

0.16519 0.41831 -0.00285 0.00633

B10 ΔB10 B11 ΔB11

-9.39097E-4 0.03784 5.61948E-5 5.72233E-4
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Table 3. Cik, i = 0, 1; k = 0, 1

C00 ΔC00 C01 ΔC01

-0.93744 1.81635 0.01508 0.02747

C10 ΔC10 C11 ΔC11

0.0097 0.01907 -1.51786E-4 2.88403E-4

Table 4. Dik, i = 0, 1, 2; k = 0, 1

D00 ΔD00 D01 ΔD01

-445.17911 371.07499 5.18106 5.61205

D10 ΔD10 D11 ΔD11

10.36298 8.05326 -0.12378 0.1218

D20 ΔD20 D21 ΔD21

-0.05986 0.04372 7.3125E-4 6.61214E-4

which exhibit a rather complex transitional spectra. Analyzing the values of the
parameters that were so determined, given in the Tables 1, 2, 3 and 4, we were able
to conclude that their biggest weight comes from the free coefficients. The smallest
parameters multiply the third-order terms ZN2, which have rather large values for
the nuclei considered. In general there is in all the parameters of the Hamiltonian a
dependence on both N and Z and their productNZ , that reflects on the importance
of the proton neutron interactions which were initially included in the interpretation
of the models assumptions.

Of course in order to test our procedure, we will have to further establish the ac-
curacy of our results by comparing the energies obtained with the new 20 parameters
for the states of the two bands of each nucleus (the corresponding values of (N ,Z))
with the experimental data. Another advantage of this approach is the possibility to
predict by interpolation the values of some parameters and to calculate with their
help the not yet measured energies of the states from the bands under consideration.

This work was supported by the Bulgarian National Foundation for scientific
research under Grant Number Φ − 1501, a grant for scientific collaboration with
the Bogolyubov Laboratory for Theoretical Physics of JINR, Dubna and the U.S.
National Science Foundation, Grant Number 0500291.
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