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Abstract. Multiply charged Helium ions are strongly responsible for the properties and char-
acteristics of high-temperature astrophysical and laboratory plasma, as well as for the pro-
cesses within plasma.

Our previous works [1–3] present ground state electron energies, mass corrections and
mass polarization effects of He isoelectronic ions, with charge from Z = 2 to Z = 54.
Results were obtained by solving the two-electron Schrödinger equation in the explicitly
correlated wave functions (ECWF) approach. The numerical procedure brings to a solving of
algebraic system of non-linear integro-differential equations of 4th order.

The proposed work presents ground state electron energies, mass corrections and mass
polarization effects of He isoelectronic ions with nuclear charge for the main nuclides from
Z = 2 to Z = 118. The same type generalized Hylleraas’ ECWF are used. The variational
procedure for determination of the coefficients is discrete, leading to an eigenvalue problem.
The developed analytical and numerical method allows to obtain numerical results, which are
practically coinciding with those presented in [4,5]. Using of the same method, we have the
same accuracy for ions with charge Z > 10. The dependence of the obtained energies versus
Z is investigated, as well as the relative and complex contributions of mass corrections and
mass polarization effects in formation of the ground state electron energies.

The approach developed may be regarded as a base for investigation of the relativistic
corrections and QED effects at next stage. The accuracy of the obtained results allows directly
usage in precise theoretical approaches [6,7] for plasma diagnostics.

1 Introduction

Multiply charged Helium ions and their interaction with photons and atomic parti-
cles (electrons, ions, atoms, molecules) are strongly responsible for the properties
and characteristics of high-temperature astrophysical and laboratory plasma.

Multiply charged are ions [6] having spectroscopic symbol z ≥ 5, where z =
Z−Ne+1,Z is the nuclear charge,Ne is the number of electrons. Helium multiply
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charged ions possess all peculiarities, such as He and Helium low charged ions
(Z < 10).

While for He and low-charged He ions, despite of the state (ground, excited,
degenerated), the first electron always occupies 1s level, there exist states for He
multiply charged ions, where both electrons can reside higher levels.

In addition to these peculiarities, multiply charged He ions (Z > 10) have spe-
cific properties, which are not appeared (or are slightly appeared) in low charged
ions and neutral atoms. These properties are conditioned by non-compensated by
electrons long-range Coulomb field of the nucleus. Ionic electrons in multiply ion-
ized He ions already possess much higher orbital velocity comparing to the case of
the neutral He atom, where V0 = 2.18× 106 m/sek.

As a result, observed effects in low charged He ions become much more com-
mon. Mass-polarization and relativistic effects are already not negligible small cor-
rections, and the bounding between spin and orbital electron moments cannot be
described only with common LS interaction.

The relativistic corrections increase fast when the nuclear charge is increased.
As a result, the probability of the low intensity radiation transitions for He and low
charged He ions increases. For example, at Z > 10 the spectral line of 23P1 −
11S0 transition possesses similar intensity as the intensity of the resonance line
21P1 − 11S0. In addition to the allowed spectral transitions, there are appeared
new high intensity lines for He atom (so called forbidden transitions), for example
1s2s 3S1−1s2 1S0. When the charge is increased, the relative part of the forbidden
transitions increases also: the probability for allowed transitions increases as Z4,
and for the forbidden transitions as Z8 − Z10.

As a result of strong Coulomb field, and two electrons moving within it, the
spectrum structure becomes H-like when Z increases. The strong Coulomb field
determines the possibility for much higher absolute value of the energy of the elec-
tronic system compared to the ionization potential, and possibility for the two elec-
trons occupation of highly excited (auto-ionized) states, outside the ionization limit.
For these auto-ionized states, when Z increases, the probability for fast radioactive
decay is raised. For low charged ions, the main decay channel is the auto-ionization.
For Z = 10 − 20 the probabilities for radioactive decay and auto-ionizations are
equal. For Z > 30 the radioactive decay is more probable. For much higher values
of Z , the radioactive decay is the only main channel. For radioactive decay may be
observed quasi-discrete states of the ions with transition states (one or both) dis-
posed in the continuous spectrum.

The channels for radioactive decay in this case may be: braking radiation – elec-
tron transition between states in the continuous spectrum, or the contrary process –
braking absorption. For transitions from the continuous to the discrete spectrum, the
final state can be excited or ground. For this transition there is a photon emission –
radiative recombination (photorecombination). It is possible also the reverce process
– photoionisation. A special case of photorecombination is the dielectron photore-
combination – electron trapping from an ion and exciting of the ion. The channels
for decomposition of excited ion are two: autoionisation with electron emission and
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radiative with photon emission and transition of the ion in stable state – dielectron
recombination. This process is accompanied by additional dielectron satellite spec-
tral lines.

The important role of the correlation interactions and their contribution to the
electron energy in low and multiply charged He ions requires using of approaches,
accounting for the correlation between particles. In such approaches wave functions
are not represented as anti-symmetrized multiplications of one-electron functions.
Hartree-Fock results can be improved by applying configuration interaction, cou-
pled cluster or other schemes to account for electron correlation. But for atoms with
few electrons, the best account of correlation is obtained using explicitly correlated
wave functions [8–10].

2 Method

2.1 Hylleraas Wave Function

Ingenious explicitly correlated wave function proposed by Hylleraas [11,12] is for-
mulated in terms of elliptical coordinates:

s = r1 + r2; t = r2 − r1; u = r12 = |�r2 − �r1|, (1)

where �r1 and �r2 are the radius-vector of two electrons in the Decarts-coordinate
system with the zero point in the nuclear center and r1 and r2 are their magnitudes.

The generalized Hylleraas-type 2-electron wave functions we consider have the
form [8]

|Ψ〉 =
∑
STU

CSTU |STU〉 (2)

where

〈�r1�r2|STU〉 =
1

π
√

2
e−s/2sStTuU . (3)

The S, T, U are positive integers, with T even as a consequence of the symmetry
requirement of the spatial wave function.

The phase space in these elliptical coordinates is well known. For a normalizable
function F (s, t, u) symmetric in t one has∫

d3r1d
3r2δ(r1 + r2 − s)δ(r2 − r1 − t)δ(r12 − u)F (s, t, u) =

= 2π2

∫ +∞

0

ds

∫ s

0

du

∫ u

0

dtu(s2 − t2)F (s, t, u). (4)

The overlap of two Hylleraas wave functions is therefore given by

〈STU |S′T ′U ′〉 =
∫ +∞

0

ds

∫ s

0

du

∫ u

0

dt u(s2 − t2)e−ssS+S′
tT+T ′

uU+U ′
(5)
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With the standard integral

I(k, l,m) =
∫ +∞

0

ds

∫ s

0

du

∫ u

0

dt e−ssktlum =
(k + l+m+ 2)!

(l + 1)(l +m+ 2)
, (6)

the overlap matrix becomes

〈STU |S′T ′U ′〉 = I(S + 2, T ,U + 1)− I(S, T + 2,U + 1)), (7)

where S = S + S′, T = T + T ′, U = U + U ′. To avoid numerical roundoff error
it is advisable to calculate this difference analytically,

〈STU |S′T ′U ′〉 = (S + T + U + 5)!
2(2T + U + 6)

(T + 1)(T + 3)(T + U + 3)(T + U + 5)
.

(8)

2.2 Matrix Elements of the Hamiltonian

The non-relativistic Hamiltonian is the sum of the kinetic energy, the Coulomb at-
traction to the central charge, and the inter-electron repulsion. In atomic units:

H = T + Vc + Ve = −1
2
(∇2

1 +∇2
2)− Z(

1
r1

+
1
r2

) +
1

|�r1 − �r2|
(9)

The potential terms are easily written in elliptical coordinates. Combined with the
phase space element one has

u(s2 − t2)Vc = (−Z)4su (10)

u(s2 − t2)Ve = s2 − t2. (11)

The kinetic term requires a bit more work. In general a matrix element can be written
as ∫

d3r1d
3r2ψL(�r1, �r2)[−

1
2
(∇2

1 +∇2
2)]ψR(�r1, �r2) =

=
1
2

∫
d3r1d

3r2[(∇1ψL).(∇1ψR) + (∇2ψL).(∇2ψR)]. (12)

The conversion to s, t, u variables proceeds with the chain rule,

∂

∂(xα)i
=
(

∂s

∂(xα)i

)
∂

∂s
+
(

∂t

∂(xα)i

)
∂

∂t
+
(

∂u

∂(xα)i

)
∂

∂u
=

=
(xα)i
rα

(
∂

∂s
+ (−1)α

∂

∂t

)
+ (−1)α

(x2)i − (x1)i
r12

∂

∂u
, (13)

α = 1, 2, i = 1, 2, 3.
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Using L,R indices to indicate that the derivative operators act on the left or right
wave function, one obtains

∇1L.∇1R +∇2L.∇2R =

= (
∂

∂sL
− ∂

∂tL
)(

∂

∂sR
− ∂

∂tR
) + (

∂

∂sL
+

∂

∂tL
)(

∂

∂sR
+

∂

∂tR
) + 2

∂

∂uL

∂

∂uR
+

+
r21 − �r1.�r2
r1r12

{( ∂

∂sL
+

∂

∂tL
)
∂

∂uR
+

∂

∂uL
(
∂

∂sR
+

∂

∂tR
)}+

+
r22 − �r1.�r2
r2r12

{( ∂

∂sL
− ∂

∂tL
)
∂

∂uR
+

∂

∂uL
(
∂

∂sR
− ∂

∂tR
)}. (14)

After simplification, using e.g.

r21 − �r1.�r2
r1r12

± r22 − �r1.�r2
r2r12

=
(r1 ± r2)(2r1r2 ± [r212 − r21 − r22 ])

2r1r2r12
(15)

the operator of kinetic energy can be rewritten as

T = Tss + Ttt + Tuu + Tsu + Ttu (16)

where

u(s2 − t2)Tss = u(s2 − t2) ∂

∂sL

∂

∂sR
(17)

u(s2 − t2)Ttt = u(s2 − t2) ∂

∂tL

∂

∂tR
(18)

u(s2 − t2)Tuu = u(s2 − t2) ∂

∂uL

∂

∂uR
(19)

u(s2 − t2)Tsu = s(u2 − t2){ ∂

∂sL

∂

∂uR
+

∂

∂uL

∂

∂sR
} (20)

u(s2 − t2)Ttu = t(s2 − u2){ ∂

∂tL

∂

∂uR
+

∂

∂uL

∂

∂tR
}, (21)

i.e. Tμν = f(h, μ, ν)Dμν , where f(h, μ, ν) is square function of (h, μ, ν), Dμν are
derivative operators of first order and h, μ, ν = s, t or u.

It is now possible to calculate the matrix elements of the Hamiltonian. Using the
notations of the expressions (7), (8) and V = T + U W = S + V , one finds the
matrix elements of kinetic energy:
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〈STU |S′T ′U ′〉 = (W + 5)!
2(T + V + 6)

(T + 1)(T + 3)(V + 3)(V + 5)
(22)

〈STU |Tss|S′T ′U ′〉 = {SS′(W + 3)!− S + S′

2
(W + 4)! +

1
4
(W + 5)!} ×

× 2(T + V + 6)
(T + 1)(T + 3)(V + 3)(V + 5)

(23)

〈STU |Ttt|S′T ′U ′〉 = TT ′(W + 3)!
2(T + V + 2)

(T − 1)(T + 1)(V + 1)(V + 3)
(24)

〈STU |Tuu|S′T ′U ′〉 = UU ′(W + 3)!
2(T + V + 4)

(T + 1)(T + 3)(V + 1)(V + 3)
(25)

〈STU |Tsu|S′T ′U ′〉 = {(SU ′ + US′)(W + 3)!− U + U ′

2
(W + 4)!} ×

× 2
(T + 1)(T + 3)(V + 3)

(26)

〈STU |Ttu|S′T ′U ′〉 = (TU ′ + UT ′)(W + 3)!
2

(T + 1)(V + 1)(V + 3)
(27)

〈STU |Vc|S′T ′U ′〉 = (−Z)(W + 4)!
4

(T + 1)(V + 3)
(28)

〈STU |Ve|S′T ′U ′〉 = (W + 4)!
2(T + V + 5)

(T + 1)(T + 3)(V + 2)(V + 4)
. (29)

2.3 Scaling

If the Hylleraas wave function in Eq. (3) is subjected to a coordinate scaling trans-
formation

〈�r1�r2|Ψα〉 =
∑
STU

CSTU e−αs/2(αs)S(αt)T (αu)U (30)

then the overlap, kinetic, and potential matrix elements have definite scaling,

〈Ψα|Ψα〉 = 〈Ψ |Ψ〉/α6 (31)

〈Ψα|T |Ψα〉 = 〈Ψ |T |Ψ〉/α4 (32)

〈Ψα|V |Ψα〉 = 〈Ψ |V |Ψ〉/α5. (33)

The expectation value of the energy then becomes

〈Ψα|H |Ψα〉
〈Ψα|Ψα〉

=
α2〈Ψ |T |Ψ〉+ α〈Ψ |V |Ψ〉

〈Ψ |Ψ〉 . (34)

2.4 Variational Procedure

The energy will be minimized by varying the Hylleraas wave function to both the
expansion coefficients CSTU and the scaling factor α.
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One first determines, for fixed α, the best linear combination. Variation with
respect to the expansion coefficients in Eq. (34) leads to the generalized eigenvalue
problem,

(α2[T ] + α[V ])Cα = Eα[M ]Cα. (35)

where the square symmetric matrices [T ], [V ], [M ] are the kinetic, potential, and
overlap matrices as derived above in the basis of the |STU〉 states, and Cα is the
column matrix containing the expansion coefficients. The lowest eigenvalueE0

α de-
fines a function of one variable, the minimum of which can be obtained using stan-
dard techniques. This minimum is finally the best variational approximation for the
ground-state energy.

In practice one calculates the matrices [T ], [V ] and [M ] only once. We use
Lövdin’s orthogonalization [13]. Solving the generalized eigenvalue problem in
Eq. (35)proceeds by first diagonalizing the overlap matrix [M ], with resulting
eigenvalues di and eigenvectors Zi. In a next step one constructs the matrices
[T ′]ij = (ZTi [T ]Zj)/

√
didj and [V ′]ij = (ZTi [V ]Zj)/

√
didj . This has the ad-

vantage that it is possible to introduce a threshold for the eigenvalues of [M ]. A
large basis of polynomials may be almost linearly dependent in the limited volume
around the atom. This results in very small eigenvalues di of [M ], and numerically
instable results. Such instabilities can be simply avoided by omitting the correspon-
ding eigenvectors Zi in the construction of [T ′] and [V ′]. Finally one has to solve,
for various values of α, the lowest eigenvalue of the eigenvalue problem

(α2[T ′] + α[V ′])C′α = EαC
′
α. (36)

This determines the function E0
α of which the minimum has to be determined.

3 Mass Corrections

In a system described by a two-electron Schrödinger equation, taking into account
nuclear motion entails two mass corrections [9,10]:

(i) As in the one-electron case, the mass correction

ε1 = − ε

1 + ε
E0 ≈ −εE0, (37)

where ε = me/M (me is the electron mass and M is the nucleus mass). The
accounting of mass correction leads to increasing of the atomic energy approx-
imately by ε|E0| = (me/M)|E0|, independently of the atomic state.

(ii) An additional perturbation correction, ’mass polarization’

ε2 = ε

∫
∇1Ψ

∗(�r1, �r2)∇2Ψ(�r1, �r2)d�r1d�r2, (38)

is different for various atomic states, as it depends on the mutual disposition
and space correlation of the electrons.
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Within ECWF approach, the mass corrections ε1 and ε2 are positive. For ex-
ample, the order of ε1 for Helium is 1.22 × 10−4 [11], and the order of ε2 is
2.18×10−5 [4]. There exist experimental data for some values of the nucleus charge
Z . Regarding the ground state energy of He and isoelectronic He ions, variational
solving of two-particle Schrödinger equation using trial ECWF, gives energy val-
ues, which are lower than the experimentally observed ones. In order to be able to
compare these values to the experimental data, obligatory condition is to add mass
corrections ε1 and ε2 to ground state energy. Exact coincidence with the experiment
is expected after addition of relativistic and QED corrections as well.

For the ground state, the electrons are located at relatively small distance from
each other, and this effect may be significant. The term ε2 can be derived by per-
turbation from the unperturbed ψ0. Following the procedure described in Section 2,
we obtain:

(∇1ψL)·(∇2ψR) =
1
2
{ (r

2
1 + r22 − r212)

r1r2

∂ψL
∂r1

∂ψR
∂r2

+
(r22 − r21 − r212)

r1r12

∂ψL
∂r1

∂ψR
∂r12

+

+
(r21 − r22 − r212)

r2r12

∂ψL
∂r12

∂ψR
∂r2
} − ∂ψL

∂r12

∂ψR
∂r12

(39)

E =
∫

(∇1ψL) · (∇2ψR)dr1dr2 = 2π2

∫ ∞
0

ds

∫ s

0

du

∫ u

0

dtψL×

× (Ess + Ett + Euu + Est + Esu + EAsu + Etu + EAtu)ψRu(s2 − t2), (40)

where

u(s2 − t2)Ess = u(s2 + t2 − 2u2)
∂

∂sL

∂

∂sR
, (41)

u(s2 − t2)Ett = −u(s2 + t2 − 2u2)
∂

∂tL

∂

∂tR
, (42)

u(s2 − t2)Euu = −u(s2 − t2) ∂

∂uL

∂

∂uR
, (43)

u(s2 − t2)Est = u(s2 + t2 − 2u2){ ∂

∂sL

∂

∂tR
− ∂

∂tL

∂

∂sR
}, (44)

u(s2 − t2)Esu = t(s2 − u2){ ∂

∂sL

∂

∂uR
− ∂

∂uL

∂

∂sR
}, (45)

u(s2 − t2)EAsu = s(t2 − u2){ ∂

∂sL

∂

∂uR
+

∂

∂uL

∂

∂sR
}, (46)

u(s2 − t2)Etu = −s(t2 − u2){ ∂

∂tL

∂

∂uR
− ∂

∂uL

∂

∂tR
}, (47)

u(s2 − t2)EAtu = −t(s2 − u2){ ∂

∂tL

∂

∂uR
+

∂

∂uL

∂

∂tR
}. (48)
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3.1 Matrix Elements

For the matrix elements of mass polarization ε2 by analogical of the kinetic energy,
we obtain:

〈STU |Ess|S′T ′U ′〉 =
(W + 3)!

2
[(S − S′)2 − (V + 4)2 − (W + 4)]U

(T + 1)(T + 3)(V + 3)(V + 5)
, (49)

〈STU |Ett|S′T ′U ′〉 = 2(W + 3)!
TT ′U

(T − 1)(T + 1)(V + 1)(V + 3)
, (50)

〈STU |Euu|S′T ′U ′〉 = −(W + 3)!
2UU ′(T + V + 4)

(T + 1)(T + 3)(V + 1)(V + 3)
, (51)

〈STU |Est|S′T ′U ′〉 = 0, (52)

〈STU |Esu|S′T ′U ′〉 = 0, (53)

〈STU |EAsu|S′T ′U ′〉 = (W + 3)!
(S − S′)(U − U ′) + U(V + 4)

(T + 1)(T + 3)(V + 3)
, (54)

〈STU |Etu|S′T ′U ′〉 = 0, (55)

〈STU |EAtu|S′T ′U ′〉 = −2(W + 3)!
TU ′ + T ′U

(T + 1)(V + 1)(V + 3)
, (56)

where by analogical of the equations (16–21),

Eμν = fE(h, μν)DEμν ,

fE(h, μν) are again square functions and DEμν are derivative operators; index A
notes anti-commutator.

In order to obtain mass polarization ε2 of Eq. (38), after scaling:

〈Ψα|E|Ψα〉 = 〈Ψ |E|Ψ〉/α4, (57)

where 〈Ψ |E|Ψ〉 is sum of the matrix elements Eqs. (49–56) we substitute in Eq. (57)
the values of the expansion coefficientsCSTU and scale parameter α determined by
variational equation (36).

The nuclear masses used in our computations were derived from recent tables of
mass exess Δ [14], using the known relation:

MNUC = Δ+A− Zme + be

The main isotope is chosen for each element, using the data in [14].

4 Results

The obtained results are presented in following tables and pictures:
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Figure 1. Correlated ground-state energies E0 [eV] of Helium isoelectronic ions with Z =
2 ÷ 118, omitting mass corrections: E0(BS) – computed using Bethe and Salpeter’s semi-
empirical formula [8] and our results.

Figure 2. Various corrections to the ground-state energy of He isoelectronic ions, with Z =
2 ÷ 118: respective variations of our overall mass corrections and isotope number A.
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Figure 3. Our mass correction ε1 [eV] dependence from the isotope number A for Helium
isoelectronic ions with Z = 2 ÷ 118 and corresponding quadratic fit.

Table 1. Correlated ground-state (nonrelativistic) energies E0[au] for Helium isoelectronic
ions, omitting mass corrections with Z = 2 ÷ 10: E0 (Pk) Pekeris’ results [4], E0 (TK)
yielded by Thakkar and Koga’s [5], E0 (PM – Pavlov, Maruani, Mihailov at al.) – our com-
puted results (the sign ‘−’ is omitted).

ZEl+ E0 (Pk) E0 (TK) E0 (PM)
2He∗ 2.903 724 228 18289 2.903 724 377 03389 2.903 724 372 00350
3Li1+∗ 7.279 913 245 93142 7.279 913 412 66914 7.279 913 405 98892
4Be2+∗ 13.655 566 064 04600 13.655 566 238 42343 13.655 566 230 53670
5B3+∗ 22.030 971 401 91010 22.030 971 580 24262 22.030 971 571 41920
6C4+∗ 32.406 246 420 82860 32.406 246 601 89837 32.406 246 592 31340
7N5+∗ 44.781 444 965 94940 44.781 445 148 77254 44.781 445 138 54710
8O6+∗ 59.156 594 939 48940 59.156 595 122 75776 59.156 595 111 98040
9F 7+∗ 75.531 712 179 79520 75.531 712 363 95932 75.531 712 352 69580
10Ne8+∗ 93.906 806 328 80690 93.906 806 515 03737 93.906 806 503 34240
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Table 2. Mass corrections in a.u.: mass correction ε1 and ‘mass polarization’ correction ε2
for Helium isoelectronic ions with Z = 2 ÷ 10 (Pk – Pekeris’ results; PM – our results).

ZEl+ ε1(PM) × 10−4 ε2(PM) × 10−5 ε2(Pk) × 10−5

2He∗ 3.980 268 125 186 2.180 438 608 687 2.180 243 296 004
3Li1+∗ 5.693 040 027 525 2.259 849 702 947 2.260 004 093 439
4Be2+∗ 8.313 789 194 329 2.560 214 458 570 2.560 412 988 624
5B3+∗ 10.979 947 476 630 2.754 847 205 670 2.755 165 781 146
6C4+∗ 14.817 902 631 770 3.133 725 061 288 3.134 318 923 867
7N5+∗ 17.547 562 500 285 3.205 789 953 211 3.206 359 899 811
8O6+∗ 20.293 898 928 876 3.262 542 671 668 3.263 644 518 290
9F 7+∗ 21.814 864 741 131 3.130 849 920 246 3.131 334 938 233
10Ne8+∗ 25.773 803 005 157 3.340 413 124 123 3.341 560 695 814
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