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Abstract. We provide a brief outline of the Self Interaction Problem in the Local Density
Approximation of Density Functional Theory. We discuss how the problem can be circum-
vented by a clean formulation of the theory and show a few examples of applications of a
newly introduced simplified formulation of the theory.

1 Introduction

The study of the dynamics of finite systems under strong perturbations has focused
numerous investigations in the past in many domains of science (nuclear colli-
sions [1], plasma physics [2], electronic dynamics [3,4]). From the theoretical point
of view, the problem still raises several difficulties and thus calls for the formulation
of well founded theories. The goal of our investigations is to study explicitely the
dynamics of clusters and molecules subject to an irradiation by a laser or a charged
projectile. We furthermore require a high degree of accuracy at low energy in order,
in particular, to be able to analyze phenomena close to ionization threshold. With
such constraints, Density Functional Theory (DFT) [5, 6], extended in the time do-
main (Time Dependent DFT, TDDFT) [7] appears as the most promising theory for
addressing such questions. Density Functional Theory has provided a major tool of
investigation for numerous physical and chemical systems over the last few decades,
both for static and dynamical problems. It thus now constitutes a well founded the-
oretical basis on which to develop accurate approaches. It nevertheless still raises
numerous formal difficulties and we shall discuss here one the well known pathol-
ogy, namely the Self Interaction Correction (SIC) problem.

The simplest approximation to DFT is the well known Local Density Approxi-
mation (LDA) which provides a simple ansatz for the account of exchange and cor-
relation effects on the basis of a Fermi Gas approximation. The LDA approximation
provides an extremely useful tool in DFT because of its simplicity and robustness. It
furthermore constitutes a sound basis for many theoretical developments. It never-
theless suffers from a self interaction problem, that is the fact that when one electron
interacts with the mean-field, which is a functional of the total density (hence includ-
ing the electron itself), this implies that it also interacts with itself. This is a priori a
generic pathology of mean-field, but it is explicitely cured by the exchange term, for
example in the Hartree-Fock approximation. The approximate LDA exchange does
not suffice to make such a cancellation properly, which leads to a spurious residual
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self interaction. This defect can have sizable consequences on the physical descrip-
tion of the systems we are interested in. We thus have to correct for this defect by
dedicated theories. This is the aim of this contribution to discuss such strategies.

The paper is organized as follows. After a brief introduction on electronic sys-
tems, we switch to DFT and LDA and illustrate the SIC problem on a typical exam-
ple. We then introduce standard SIC approaches and explain their limitations and
the need for improved formulations. We finally present a recently introduced clean
formulation of SIC and illustrate the improvement it brings on a typical example.
We finally conclude and discuss a few perspectives on dynamical applications.

2 About Electronic Systems

In this section, we shall certainly not cover all aspects associated to electronic sys-
tems. We rather aim at providing a few key ideas concerning some of their basic
properties in complex systems and which differ from the case of nuclear systems.
In a second step, we briefly recall a few observables considered for describing elec-
tronic systems, in particular in relation to irradiation processes. Any finite electronic
system involves a background of ions to which electrons are associated to form a
molecule or a cluster. Ions can in most cases be treated as classical particles and
since they rea very massive as compared to electrons, there is no basic problem with
the definition of the center of mass in such systems, at variance with the nuclear
case.

Another aspect which deserves some discussion concerns the impact of ex-
change in electronic systems. In a neutral molecule or cluster, binding dominantly
comes from Coulomb exchange (typically about 3/4). This is illustrated in Figure 1
in which are plotted the various contributions to the electronic mean-field in the case
of Na138 with soft jellium (original jellium approach complemented by an effective
treatment of surface by softening). The upper panel shows that jellium and elec-
tron densities stay indeed very close to each other (up to quantum oscillations of the
electronic density), which minimizes the direct Coulomb energy. The lower panel of
Figure 1 shows the effective electronic potential and its separate contributions. The
(extremely small) part labelled “direct Coulomb” is the total Coulomb field from
electrons and jellium background. Even with a detailed account of ions, it would
remain small. The largest contribution to cluster binding comes from the exchange
energy and, to a lesser extent, from the correlation energy (20–30%).

To end this section, we schematically sort observables of electronic systems,
both finite and bulk, in three main classes (with soft porous boundaries though):
intrinsic single particle properties, global structure ones and properties in direct re-
lation to the response to electromagnetic fields. Among single particle properties, let
us especially mention the density of states and band gap in solids. The work func-
tion in solids corresponds to the Ionization Potential (IP) in finite systems and is
known as separation energy in nuclei. All these single particle properties have been
well studied in a variety of systems both experimentally and theoretically. Bond
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Figure 1. Electronic and ionic densities (upper panel) and effective electronic field (Kohn-
Sham potential, see section 3) for Na138 computed with the energy functional of [8] and soft
jellium background (rs = 3.93 a0, width σ = 1a0). From [4].

lengths and dissociation energies in molecules or clusters lie among global struc-
ture properties. They can be read off from computed potential energy surfaces and
are usually measured very accurately. Potential energy barriers between isomers or
reaction channels are usually more difficult to access but data exist as well. Finally
the response to electromagnetic fields involves several key quantities such as, in par-
ticular, the static and dynamical polarizability of a finite system, and also magnetic
moments. Other key quantities, such as IP and dissociation energies, although often
considered as static quantities, actually play a key role in the understanding of ir-
radiation processes we aim at describing. We shall thus focus a sizable part of our
discussions on these quantities, using them as illustrative examples.

3 From DFT to LDA

There exist a bunch of well documented presentation of DFT, LDA and TDDFT
and we refer the reader to these various references for more details [5–7]. We just
briefly introduce the key ingredients necessary for the further discussions. We only
discuss electrons here, ions being treated as classical particles all over. We work in
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the so-called Kohn-Sham [9] scheme of DFT in which the system is represented by
a set {ψα, α = 1, ...} of single electron wavefunctions. The latter serve to construct
the one-body density, ρ =

∑
α |ψα|2 =

∑
α ρα, key ingredient of DFT according to

Hohenberg and Kohn’s theorem [10]. The resulting theory ressembles an effective
mean-field theory involving a single electron Hamiltonian, h[ρ] = h0 + UH + Uxc,
where h0 = − �

2

2mΔ is the kinetic term, UH the Hartree (direct) Coulomb interac-
tion, and the exchange correlation term which is a functional of the density ρ(r) and
which has to be properly chosen.

The simplest approximation for Uxc is provided by the Local Density Approxi-
mation (LDA). It consists in calculating this term assuming that the system is infinite
and homogeneous and take this value locally. This amounts to make the replacement
Uxc[ρ∞]→ Uxc[ρ(r)] where ρ(r) is the local density and ρ the density of the corres-
ponding infinite system with homogeneous density ρ(r). The exchange correlation
term thus becomes a simple function of the local density ρ(r) and in the following
we denote by ULDA the corresponding one-body potential (ULDA = UH + Uxc).
By construction, LDA should be valid only for systems in which the density ρ(r)
varies sufficiently slowly. In fact, it performs much better than expected and can
be successfully applied to situations with nonvanishing density gradients. Note that
cancellation errors occur in the exchange correlation terms, so that they usually per-
form globally better when plugged together in a LDA functional rather than when
optimizing separately exchange and correlation terms. Generally speaking, LDA
performs well for the computation of total energies, from which for example one
can extract ionization potentials by differences. Dissociation energies are usually
attained within 10–20% as well. One should furthermore note that LDA exhibits
good formal features, at variance with some other DFT methods (see section 5).
The LDA is thus a tremendously good approximation in view of its simplicity. And
as stated by Kohn [6], it is so to say the mother of most approximations in DFT. It
is thus interesting to see how it performs in a few typical systems.

We start with an example from solid state physics. Lattice constants of a few
systems, from simple covalent ones as C, Si, Ge, to mixed ones as AlN, SiC, GaN,
AlAs and GaAs, have for example been computed in LDA and compared to ex-
perimental values. In all the cases the error to experiments is remarkably small,
∼ 1–2 %. The next example concerns the optical response in a simple metal clus-
ter, presented in Figure 2. We compare semi-classical and TDLDA results with ex-
perimental data [11] together with results from ab initio Configuration Interaction
quantum chemistry calculations [12]. All calculations compare reasonably well to
experiments, even LDA in the semi-classical approximation. We finally consider
the example of simple dimer molecules in which key quantities are the bond length
re (equilibrium distance between the two atoms), the dissociation energy De (en-
ergy required to break the ground state dimer into two isolated atoms) and vibration
frequency at equilibrium ωe. We take a set of LDA results from standard LDA cal-
culations [13] applied to 13 typical molecules (H2, Li2, B2, C2, O2, N2, F2, Na2,
Al2, Si2, P2, S2, Cl2) including covalent and metallic bonds. As compared to exper-
imental values, the average over LDA results leads to an agreement of order 1% for
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Figure 2. Optical absorption strengths for the cluster Na+
8 with experimental spectra

(top) [11], quantum (middle) and semi-classical results (bottom) dispalyed as indicated. The
strengths from configuration interaction calculations [12] are indicated as bars in the middle
panel.

re, about 24 % for De and 3% for ωe, which is altogether quite encouraging. LDA
thus provides a very sound starting basis for DFT calculations in many domains of
physics and chemistry.

4 The SIC Problem

In spite of its many successes, LDA suffers the self interaction problem since the
approximate exchange term does not cancel exactly the self interaction contribution
in the direct term, as is for example the case in Hartree Fock calculations. As a side
remark, note that this problem does not appear crucial in nuclear systems because
of the short range of the nuclear interaction. Indeed, when using an effective zero
range interaction, it can even be exactly solved. There only remains the correction
to the Coulomb term but, even in proton-rich nuclei, it does not seem that an ap-
proximate treatment of Coulomb exchange might have an experimentally visible
impact. The situation is completely different in electronic systems in which, as al-
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Figure 3. Comparison between LDA and ADSIC for K−
7 with soft jellium background (rs =

5.0 a0, σjel = 1.37 a0). Compared are: the net Kohn-Sham potentials (full lines), the single
electron energies (dashed lines), and the one-electron separation energy ΔE = E(K−

7 ) −
E(K7) (dotted lines). The left panel shows results from LDA and the right panel from ADSIC
(see section 5). From [4]

ready mentioned, (Coulomb) exchange provides about 3/4 of the total binding of a
system. And, in that case, the poor treatment of the self interaction leads to mea-
surable pathologies. The simplest example is provided by the IP which sensitively
depends on the self interaction. Indeed LDA exhibits a wrong asymptotic behavior
of the electronic potential (a departing electron does not feel the correct potential
due to electrons remaining in the system) which leads to an incorrect IP. The effect
is especially strong when the IP is small, as in the case of anionic clusters. Figure 3
shows the example of K−7 and demonstrates the typical pathology in the evaluation
of IP: LDA violates Koopmanns’ theorem as the IP, evaluated from the energy differ-
ence ΔE, strongly differs from the energy of the least bound state (here a 1p level).
Moreover the energy of the 1p level is vanishingly small, which is wrong. Finally
the electronic potential exhibits an unphyscial bump at intermediate distances. All
in all, LDA badly fails in that case and calls for a correction of the self interaction
(SIC) problem.

5 Self Interaction Correction and Optimized Effective Potential

The basic SIC method consists in subtracting “by hand” the spurious self interac-
tion [14, 15]. As compared to the LDA energy, this amounts to define a SIC energy
ESIC and the corresponding one-body Hamiltonian, obtained from variation ofESIC

with respect to ψ∗α, as follows:
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ESIC = ELDA[ρ]−
N∑
β=1

ELDA[|ψβ |2], (1)

hSIC,α = hLDA − ULDA[|ψα|2] = h0 + USIC,α, (2)

where USIC,α = ULDA[ρ]−ULDA[ρα]. The key point here is that the resulting one-
body Hamiltonian does depend on the orbital on which it acts, which has disastrous
consequences. This a priori breaks the orthonormality of the ψα and should thus
severely plague any time dependent SIC calculations, if formulated that way. The
problem is well known since the early days of SIC methods. A way out would be to
be able to construct a (even if approximate) single one-body Hamiltonian common
to all orbitals.

There fortunately exists a general method to do so, applicable on any mean-field
theory (such as Hartree Fock in particular) and which is known as the Optimized
Effective Potential (OEP) [16, 17], actually introduced much earlier than SIC. The
idea beyond is remarkably simple and elegant. It first consists in parametrizing by
the common (optimal) potential V0 the single particle orbitals ϕV0

i . We have intro-
duced on purpose a new notation in order to properly distinguish these orbitals from
the original ψα wavefunctions which a priori act in a larger Hilbert space. We then
write down the total energy (Hartree-Fock, SIC, . . . ) with these parametrized wave-
functions. We finally optimize this energy with respect to the potential V0. This pro-
vides as a first step V0, then the associated wavefunctions ϕV0

i , and finally amount
to solve the problem in a restricted space. Applied to our SIC problem, one can thus
formally summarize the SIC-OEP procedure by :

hOEP |ϕiV0) = (h0 + V0) |ϕiV0) = εi|ϕiV0), (3)

EOEP = ESIC[{ϕiV0}], (4)
δEOEP

δV0
= 0→ V0 → ϕi

V0 . (5)

Once optimization is performed, V0 can be separated in 3 components (correspon-
ding to various degrees of approximations), V0 = VS +VK+VC , in which VS is the
simplest Slater approximation [18], VK the complementing term leading to the well
known KLI approximation (VS + VK) [19] and VC is a correction usually assumed
small. Explicit expressions for these various terms can be derived, but most calcula-
tions have been performed at Slater or KLI levels, the full OEP-SIC equations being
in most cases impossible to solve in practical cases. For a further comparison, let us
write down the Slater term :

VS =
∑
i

|ϕiV0 |2
ρ

ULDA,i , (6)

where ULDA,i = ULDA

[
|ϕiV0 |2

]
= ULDA[ρi]. Note that the Slater approximation

can be further simplified to provide the so-called Average Density SIC (ADSIC) [20]
by replacing ρi by ρ/N whereN is the total number of electrons in the system. This
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particularly simple ADSIC approximation has been recently proposed and success-
fully applied to metal clusters [20] and polyacetylene chains [21]. An example of its
performance is given in the right panel of Figure 3 where one can see that it remark-
ably solves the IP problem discussed at that place: Koopmann’s theorem is restored
and the theoretical energy of the 1p level comes fairly close to the experimental
separation energy.

Nevertheless, neither ADSIC nor the more involved Slater or KLI approxima-
tions are fully satisfying. One can easily show that Slater and KLI for example
violate key formal properties, especially when extended to the time domain (energy
conservation and zero force theorem). Even in the static domain, the situation is
not fully satisfying, by far. An example is given in Figure 4 in which the ground
state potential energy surface of the simple Carbon dimer is presented in various
DFT approaches. The LDA (LSDA in that case because spin has been properly
taken into account) presents an acceptable qualitative behavior, but it misses the
ground state energy and strongly misses the vibration frequency. All SIC calcula-
tions perfectly reproduce ground state (bond length, ground state energy, vibration
frequency), which is a welcome feature. But, they badly miss the shape of the po-
tential energy surface at intermediate distances. This is a known pathology of such
theories linked to localization problems at the side of single electron wavefunctions.
This raises a severe problem as it in particular makes dissociation properties hardly
acceptable, a key issue when considering irradiation processes. These defects call
for an improvement of SIC approaches, both in its full and OEP approximated ver-
sions. This is what is discussed in the following section.

Figure 4. Potential energy surface of the dimer C2 calculated with various DFT schemes, with
or without SIC. The full square indicates the experimental values of thebond length and the
binding energy.
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6 SIC Revisited

The basic primary defect of the original SIC formulation is the fact that it does
not ensure a proper orthonomalization of single electron orbitals, as the variational
principle applied to the SIC energy delivers orbital dependent fields. A simple way
out of this problem is to enforce orthonormalization of the wavefunctions inside the
variational principle by means of a set of Lagrange paremeters λβα. For then, the
variational principle reads

δψ∗
α
(ESIC −

∑
β,γ

(ψβ |ψγ)λγβ) = 0 (7)

which leads to the set of coupled equations

hSIC,α|ψα) =
∑
β

λβα|ψβ), (8)

0 = (ψβ |ULDA[ρβ ]− ULDA[ρα]|ψα). (9)

The enforced orthornormality leads to the second equation called “symmetry con-
dition” which becomes a crucial ingredient of the theory. Because the formulation
is variational, there necessarily exists a solution to this set of equations in spite of
its apparently very involved form. The enforcement of orthonormalization in SIC
calculations was proposed sometimes ago in static calculations [22, 23] but the for-
malism was only very recently extended in the time domain [24]. The case of time
dependent processes is much more cumbersome than the static case, at least from
a practical point of view and we shall thus not further elaborate on it here. Still it
is interesting to note that the time dependent case has led to introduce two sets of
single electron orbitals to lead to a practical solution of the problem and this double
set strategy turns out to be extremely useful also in the static case.

The idea behind the double set strategy is to exploit a degree of freedom which is
usually neglected in DFT, namely the principle possibility to perform unitary trans-
forms among the single electron orbitals. In practice, we thus introduce two sets of
single electron orbitals linked by an unitary transform. The first set {ψα}, as natu-
rally introduced above, serves to fulfill the symmetry condition Eq. (9). It turns out
that it provides usually well localized wavefunctions. The second set {ϕi} serves
to diagonalize the SIC Hamiltonian, Eq. (8), and corresponds more to “physical”
wavefunctions to the extent that one can for then associate one single electron en-
ergy to each wavefunction. Both sets have thus their advantages and can be very
different. As such, the interest of the double set startegy is nevertheless rather lim-
ited in a static full SIC approach. But it becomes very interesting when considering
SIC-OEP. One intuitively sees that the {ϕi} are probably structurally close to the
SIC-OEPϕiV0 wavefunctions. Indeed, when properly formulated, the new SIC-OEP
theory based on the double set strategy allows to derive a very accurate version of
the Slater approximation, the Generalized Slater (GSlat) approximation [25]. Be-
cause of the localization of the {ψα} wavefunctions, one can formally demonstrate
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Figure 5. Comparison of various approaches for the C atom. Left panel: Deviation of binding
energy from the Hartree-Fock benchmark value. Right panel: Deviation of dipole polarizabil-
ities (in x, y, and z directions) from the Hartree-Fock values [25].

that the usual Slater approximation becomes accurate, provided the potential is ex-
pressed in terms of the {ψα}, while the OEP problem remains solved at the level of
the ϕiV0 wavefunctions. This formally reads

hOEP |ϕiV0) = εi|ϕiV0), (10)

V0 � VGSlat =
∑
α

|ψα|2
ρ

ULDA[|ψα|2], (11)

with both sets connected by the proper unitary transform. This GSlat provides results
extremely close to the full SIC ones. For example, it restores dissociation proper-
ties of C2. Mind that full SIC has no problem for C2; these are the approximations
to SIC-OEP which raise problems. The interest of this GSlat approximation is illus-
trated in Figure 5, where total energy and polarization of a carbon atom are displayed
for various theories. To check the theory in a simple framework, we consider here
an exchange only calculation for which Hartree Fock becomes the benchmark. Re-
sults are clear from Figure 5 with a remarkable accuracy attained by full SIC and an
equally good quality by GSlat. More examples of observables have been considered
and all lead to a similar conclusion.

7 Conclusions

We have discussed the SIC problem in finite electronic systems and proposed an im-
proved scheme for solving several of the original pathologies of SIC. The self inter-
action problem is a well known defect of LDA in which exchange is treated in an ap-
proximate manner. Although LDA is able to reproduce many key data in electronic
systems, it is unable for example to properly describe ionization properties because
of this self interaction problem. The SIC method has been introduced to cure that
problem. It nevertheless also suffers from pathologies linked to the fact that it does
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not ensure orthonormalization of wavefunctions by construction. The OEP method
can then be used in conjunction to SIC to derive a formally clean approximate the-
ory to full SIC, at the price of producing extremely involved equations. The simplest
approximations to these equations, the Slater and KLI approaches have been used in
many occurrences but they still suffer from severe defects both formally and practi-
cally. We have thus proposed to revisit the SIC problem by reformulating the theory
within explicitely enforcing orthonormalization. We have furthrmore developed a
two set strategy, which is practically compulsory in the time domain, but which also
exhibits interesting properties in static problems. In particular, it allows to derive an
extension of the Slater approximation, the Generalized Slater approximation which
provides, at least for static problems, a remarkably accurate approximation to full
SIC and allows to cure many pathologies of standard Slater and KLI calculations.
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