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Abstract. Calculations of microscopic optical potentials (OP’s) (the real and imaginary
parts) are performed to analyze the 6He+p elastic scattering data at tens of MeV/nucleon
(MeV/N). The OP’s were constructed on the basis of two microscopic models (the folding
procedure and the high-energy approximation) using three model densities of 6He. Cross
sections were calculated with a help of DWUCK4 code. The effect on cross sections of the
dependence of the NN-forces on nuclear matter density is investigated. The role of the spin-
orbital terms and the non-linearity of the OP’s and also the role of its renormalization are
studied. The sensitivity of the cross sections to these effects is tested.

1 Introduction

The basic characteristics of the exotic nucleus 6He with two neutrons in the far
periphery (“halo”) have been studied on the basis of analyzes of the experimen-
tal data on scattering and reactions. For instance, the measurements of the elas-
tic scattering cross sections at energies less than 100 MeV/N have been performed
in [1–10]. Their analysis has been carried out (see, i.e. [9–17]) by using phenomeno-
logical OP’s (with many parameters), as well as using OP’s calculated within semi-
microscopic approaches. With respect to the latter, actually only the real part of
the OP’s has been calculated, while the imaginary part is taken in a phenomeno-
logical form. For calculations of the OP real part V F = V D + V EX the folding
model [18–20] has been used, in which the direct V D(r) and exchange V EX(r)
parts have been elaborated separately. Each one of these parts is given by a folding
of the density ρ2 of the 6He nucleus with an effective NN potential v(s). As an
example we give here only the direct part of the OP:

V D(r) = g(E)
∫
d3r2 ρ2(r2)F (ρ2) vD00(s), s = r2 + r, (1)

where the factor g(E) parametrizes the energy dependence of the potential, while
F (ρ2) gives the in-medium dependence of the NN forces vD00(s). (The expression
for the exchange part of the real OP can be found in [19–21], and the necessary
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parameters used are given in [21]). The spin-orbit part of the potential is intro-
duced also phenomenologically as a function with fitting parameters. This semi-
microscopic approach has been used in recent papers [15–17], where a conclusion
on sensitivity of the calculated cross sections to the choice of the structure model of
6He has been made.

It is of interest to carry out a similar analysis on a fully microscopic basis, where
both real and imaginary parts of the OP can be calculated. In principle, there exists
a theory of scattering of complex systems, e.g. the unified theory of reactions [22],
that gives a general recipe for construction of the OP. However, in practice one starts
from the conditions of the particular task, taking into account the most important
channels of the studied process, e.g. the multiple scattering and the transfer of nu-
cleons, the fragmentation and other reactions [23, 24]. It turns out, that at relatively
high energies of the nucleon scattering of nuclei (the case of inverse kinematics to
the 6He+p scattering) the most successful approach is based on the Glauber-Sitenko
theory [25, 26]. In it the multiple scattering of the incident particle on the nuclear
nucleons in the nucleus is taken into account. Important ingredients of the theory
are the nuclear density distribution function and the NN scattering amplitude. In
its optical limit this theory leads to the microscopic eikonal form of the scattering
phase where the form factors of the nuclear density profile functions and the NN
amplitude are folded. Then, using the definition of the eikonal phase as an integral
from the nucleon-nucleus potential over the trajectory of the straight-line propaga-
tion, it is possible to obtain an expression for the OP as a folding of the nuclear form
factors and the NN amplitude [27, 28]

UH = V H + iWH = − �v

(2π)2
(ᾱNN + i) σ̄NN

∞∫
0

dq q2j0(qr)ρ2(q)fNN (q), (2)

where σ̄NN and ᾱNN are, correspondingly, the averaged over the isospin of the nu-
cleus total NN scattering cross section and the ratio of the real to imaginary parts of
the forward NN scattering amplitude, both being parametrized in [29, 30] as func-
tions of the energy.

2 Results of Calculations

The general aim in this work is to study the ability of the microscopically calculated
OP’s (including also the check of the lowest energy of its applicability ) to be used
for description of the available data on the differential 6He+p elastic cross sections
at energies up to 100 MeV/N. It is important also that the fully microscopic OP does
not include free parameters but depends on the density distribution of 6He, and this
allows one to test the various existing models of this nucleus. We utilized the 6He
densities from the semi-empirical model of Tanihata [31], the cluster-orbital shell-
model approach (COSMA) [13] and the large-scale shell model (LSSM) in which a
large number of shells is taken into account [32] (see for details [33]). In Figure 1
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Figure 1. Total ((a) and (a’)), proton (b) and neutron (c) densities of 6He calculated in the
models of Tanihata et al. [31], COSMA [13] and LSSM [32].

are given in logarithmic and linear scale the forms of the proton, neutron and nuclear
densities of 6He obtained in these models. Among them only the LSSM density has
a realistic exponential behavior at asymptotically large distances, while the others
have a Gaussian asymptotics.

On the basis of the microscopically calculated OP’s we obtained the differential
elastic scattering cross sections using the DWUCK4 code [34]. Three forms of the
OP’s based on different combinations of the microscopic real and imaginary parts
of the OP’s have been studied:

(A) UAopt = NA
RV

H + iNA
I W

H , (3)

(B) UBopt = NB
R V

F + iNB
I W

H , (4)

(C) UCopt = NC
RV

F + iNC
I V

F . (5)

Here V H and WH are the High-Energy Approximation (HEA) real and imaginary
OP’s respectively, and V F is the real OP obtained within the folding approach.
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It consists of the direct V D and the exchange V EX parts. In some cases it became
necessary to vary the strength of the parts of the OP’s including corresponding fitting
coefficients NR and NI (no more than two for each part of the OP). The spin-orbit
potential was introduced following the standard definition

Uso � Nsoλ2
π

(
1
r

)
df(r)
dr

, (6)

where f(r) is the form of the real part of OP, and λ2
π=2 fm2.

The role of the spin-orbit part of OP is shown in Figure 2. The results of the
calculations in three cases are presented: a) when Nso = 0.5 and f(r) is taken to
be the microscopically calculated V F (r) (solid curves); b) Nso = 6.2 MeV and
f(r) has the form of the Woods-Saxon (WS) potential with the fitted form factor
from [35] (dashed curves); c) without the spin-orbit term, i.e. Nso = 0 (dash-dotted
curves). It can be seen that the microscopic potential leads to the same results like
those in the case when the form b) of the WS potential with three parameters has
been used. A general conclusion can be made that the spin-orbit interaction should
not be neglected. In Figure 3 the comparison with the experimental data of our
results for cross sections at various energies and using different models for the 6He
density is given.

It can be concluded that the LSSM is the most successful one in the description
of the elastic scattering data. Using the LSSM it is no necessary at 41.66 MeV/N
to renormalize the OP’s. Also, for E = 71 MeV/N only the ReOP is renormalized

Figure 2. Elastic 6He+p scattering cross section at energy E = 41.6 MeV/N calculated
using the microscopic ReOP (V F ) in the spin-orbit term (1/r)dV F /dr (solid line) and also
using the WS ReOP in 12.4(1/r)dfWS/dr (dotted line). The dashed line shows calculations
without the spin-orbit term. The LSSM density is taken for 6He and the ImOP has the form
of V F .
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Figure 3. Elastic 6He+p scattering cross sections at different energies calculated using Uopt =
NRV

F + iNIW
H for various values of the renormalization parameters NR and NI giving

a reasonable agreement with the data (presented in Table 1). The used densities of 6He are
from LSSM (solid line), Tanihata (dashed line) and COSMA (dotted line). Experimental data
for = 25.2 MeV/N are taken from [1–3], for E = 41.6 MeV/N from [6, 8] and for E =
71 MeV/N from [9, 10].

(see Table 1). Concerning comparison of cross sections at E = 25.2 MeV/N, the
WH turns out to be too deep, which is natural to be when considering potential at a
high-energy scattering. Nevertheless, if we keep it as a microscopic OP with a form
of UBopt (4) but decrease substantially the contribution of its imaginary part, a quite

Table 1. The optimal values of the renormalization parametersNR and NI obtained by fitting
the experimental data for the elastic 6He+p cross sections (see Figure 3). In the calculations
Uopt = NRV

F + iNIW
H and LSSM, Tanihata and COSMA densities for energies E =

25.2, 41.6, 71 MeV/N are used. The depths of the corresponding potentials (in MeV) are
presented in the bottom part of the Table.

Energy 25.2 25.2 41.6 41.6 71 71

Renormalization NR NI NR NI NR NI

parameter

LSSM 0.6 0.8 1.0 1.0 0.6 1.0
Tanihata 1.0 0.6 1.0 1.0 1.0 0.5
COSMA 1.0 0.6 1.0 1.0 0.8 1.0

Strength of NRV
F (0) NIW

H(0) NRV
F (0) NIW

H(0) NRV
F (0) NIW

H(0)
potential

LSSM 18.86 87.02 26.22 77.20 11.01 53.09
Tanihata 30.82 39.15 25.54 46.31 17.56 15.92
COSMA 29.70 30.05 24.73 35.54 13.78 24.44
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Figure 4. Elastic 6He+p scattering cross sections for E=25.2 MeV/N calculated by using
the LSSM density for 6He. The curves present results for Uopt = NRV

F + iNIW
H with

different values of NR (0.6 – dashed, 0.5 – dotted, 0.4 – dash-dotted) and fixed value of
NI=0.1. The solid curve is for NR=0.35 and NI=0.03. The experimental data are taken
from [1–3].

reasonable agreement with the data can be achieved (see Figure 4). We note that
such “shallow” potentials are typical for the phenomenological OP’s.

Corresponding values σR of total reaction cross sections for all pairs NR and
NI parameters (see Figures 3 and 4) are given on the Table 2 forE = 25.2 MeV/N.
It is seen that σR mainly depends on the contribution of imaginary part of potential.
The best fit (NR = 0.35 and NI = 0.03) gives the extremely small σR = 57 mb
while for NI = 0.1, σR is about 170 mb.

Unfortunately, the only experimental total reaction cross section of 6He+p was
measured at energy 700 MeV in [36, 37], it equals to about 160 mb. Of course,
these energies are not comparable because the scattering mechanisms of low and
higher energies are different. At E = 25 MeV, the reaction cross section is mainly
determined by the 6He structure while at E = 700 MeV, the most important is the
effect of nuclear medium on a nucleon-nucleon interaction.

The experimental data on total reaction cross sections at low energies would be
useful to understand a mechanism of the 6He scattering and to improve the theo-
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Table 2. The total reaction cross sections σR in dependence on the renormalization factors
NR and NI of optical potential Uopt = NRV

F + iNIW
H with the LSSM density of 6He,

for energy E=25.2 MeV/N.

NR 0.6 0.6 0.5 0.4 0.35

NI 0.8 0.1 0.1 0.1 0.03

σR[mb] 510 172 166 161 57

retical model (for example, by accounting for some other terms and effects that are
neglected at this stage).

Methodical calculations have been performed in the present work as well. It
is shown in Figure 5 the role of the density dependence of the NN forces. It is
increased with the increase of the energy, but in our case this effect is small. Also,
we performed calculations with and without accounting for the non-linearity that
exists when the exchange part V EX of the V F = V D + V EX is calculated. It is
seen from Figure 6 that the role of the non-linearity is quite important and it should
not be neglected. All curves in the previous figures have been calculated with an
account for the spin-orbit interaction and for all the effects considered here.

Figure 5. In-medium effect of the effective NN interaction on calculations of elastic 6He+p
scattering cross sections for different energies. The V F is calculated with F (ρ) = C[1 +
α exp(−βρ) − γρ] (solid lines) and with F (ρ) = 1 (dashed lines). The ImOP is calculated
within the HEA WH (see parameters of the calculations in [33]).
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Figure 6. The non-linearity effect of elastic 6He+p scattering cross section for different ener-
gies. The solid lines are the calculation results with the account for the non-linear effects in
the ReOP, and by dashed lines are presented the results obtained without accounting for the
non-linear effects. The LSSM density of 6He is used. The imaginary part of OP is calculated
within the HEA (WH).

3 Conclusions

The main conclusion of the present work is that the application of the microscopic
optical potentials with an imaginary part obtained within the HEA is justified in cal-
culations of elastic scattering cross sections of the radioactive 6He nuclei on protons
at energies of 40–100 MeV/N. Best agreement with the data is achieved when the
LSSM is used for calculations of the density of 6He. In the case ofE = 41.2 MeV/N
it was no necessary to renormalize the depth of the OP, and at E = 71 MeV/N only
one parameter NH

I = 0.6 was introduced for the ReOP. In this way, for relatively
small energies of a few tens of MeV/N it turns out to be more effective a procedure
when one uses, instead of the HEA scattering amplitude within the Glauber-Sitenko
theory [25,26], the corresponding microscopic potential [27] and then solve numer-
ically the Schroedinger equation. The point is that the HEA amplitude is based on
the eikonal scattering phase in the form of the simple integral from the potential
over the straight-line trajectory. However, when the energy decreases, in this am-
plitude one should integrate already over the real (curved) trajectory. Such integral
can not be performed practically with the exception of the case of the trajectory in
the Coulomb field of the potential of the form 1/r. It turns out at the same time that
the HEA potentials, including their imaginary part, are fully appropriate for inter-
pretation of the data not only at high E ! U energies, but also at relatively small
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E > U energies, if these potentials are put directly in the Schroedinger equation.
Actually it means that the distortion effects in the field of the potential with arbitrary
form, including the microscopic one (obtained numerically) are strictly taken into
account.

At energy E = 25.2 MeV/N the HEA potential does not work properly. It is
necessary to decrease its strength in an order of magnitude for a correct description
of the data. At processes of slow collisions the picture of the Glauber-Sitenko the-
ory for the multiple nucleon scattering in the nucleus is not realized. Just opposite,
instead of at least six collisions of the incident nucleon with nucleons of 6He, that
contribute the total nucleon-nucleus potential, already after the first collision the en-
ergy is transferred into the channel of a decay of the nucleus with an emission of two
neutrons due to the low threshold of this channel. A weak absorption in the elastic
channel (a “shallow” potential) corresponds to the process just mentioned and this
is the reason for the necessity to renormalize strongly the microscopic ImOP.

Another peculiarity of the scattering mechanism is the substantial role of the
non-linearity effects in the account for the exchange terms in the folding potential.
These effects increase with the energy increase. They are included in the real part of
OP and are still not accounted for in the ImOP that will be done.
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