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Inclusive electron scattering (e, e ′)

~q = ~pe − ~pe′ ,

ω = Te − Te′ ,

momentum and energy transferred by the probe to the constituent
of the composite system.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.

At larger energy loss, a broad peak due to quasi-elastic electron-nucleon scattering
appears; this peak - very wide due to nuclear Fermi motion - corresponds to processes
where the electron scatters from an individual, moving nucleon, which, after interaction
with other nucleons, is ejected from the target.

One finds that in the relevant energy range in the region below the QE peak
scaling of the second kind is found to be excellent and scaling of the first kind to
be quite good.
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Relativistic Fermi Gas (RFG) (without interaction between the
nucleons)
Dimensionless scaling variable ψ′:

ψ′ =
1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(1 + τ ′)

. (1)

kF – Fermi momentum; ηF = kF/mN – dimensionless Fermi momentum;

ξF =
√

1 + η2
F − 1 – dimensionless Fermi kinetic energy

κ ≡ q

2mN
; λ′ ≡ ω′

2mN
, ω′ ≡ ω − Eshift ;

τ ′ ≡ |Q
2|

4m2
N

= κ2 − λ′2 – dimensionless absolute value of the

squared 4–transferred momentum
The physical meaning of ψ′2 (in units of the Fermi energy) is the
smallest kinetic energy that one of the nucleons responding to an
external probe can have.
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F (κ, ψ′) ≡ d2σ/dΩedω
′

σM [vLGL(κ, λ′) + vTGT (κ, λ′)]
(2)

σM – Mott cross section; d2σ/dΩedω
′ – the cross section of the

inclusive electron scattering; vL, vT – Rosenbluth lepton
kinematical factors; GL, GT – single-nucleon responses expressed
by Sachs form factors, functions of τ ′, GEp,n and GMp,n .

In the RFG model:

F RFG = F RFG
T = F RFG

L . (3)

Dimensionless scaling function:

fRFG(ψ′) = kF · F RFG(ψ′) '
(η2

F�1)

3

4
(1−ψ′2)Θ(1−ψ′2) (4)

M. Barbaro et al., Nucl. Phys. A 643, 137 (1998).
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At sufficiently high energies > 500 MeV:

When f (ψ′) depends only on ψ′ and not on the momentum
transfer q one has scaling of the first kind.

When f (ψ′) and ψ′ are independent of the mass number A for
a wide range of nuclei from 4He to 197Au, one has scaling of
the second kind.

When both types of scaling occur one says that a scaling function
exhibits superscaling.
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Figure: Scaling function f (ψ′) in the CDFM (solid line) at q = 1560 MeV/c
for 4He, 12C, 27Al, and 197Au. The experimental data are given by the shaded
area. The RFG result is shown by dotted line.
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Thus, it became necessary to consider the superscaling in
theoretical methods which go beyond the RFG. One of them is the
Coherent Density Fluctuation Model (CDFM) that is a natural
extension of the Fermi gas case to realistic finite nuclear system
beyond the mean field approximation. The accounting for NN
correlations in CDFM in the momentum and density distribution
made it possible to reproduce the available experimental data for
ψ′ < 0, including ψ′ . −1.

A. N. Antonov, V. A. Nikolaev, and I. Zh. Petkov, Bulg. J. Phys. 6, 151
(1979); Z. Phys. A 297, 257 (1980); ibid. 304, 239 (1982); Nuovo
Cimento A 86, 23 (1985).
A. N. Antonov, P. E. Hodgson, and I. Zh. Petkov, Nucleon Momentum
and Density Distributions in Nuclei (Clarendon Press, Oxford, 1988);
Nucleon Correlations in Nuclei (Springer-Verlag, Berlin-Heidelberg-New
York, 1993).
A.N. Antonov, M.K. Gaidarov et al., Phys. Rev. C 69, 044321 (2004);
Phys. Rev. C 71, 014317 (2005), Phys. Rev. C 73, 047302 (2006).
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The hard-sphere dilute Fermi gas (HSDFG) is a low density gas of
fermions that interact via a repulsive hard-core potential.

A. B. Migdal, Zh. Eksp. Teor. Fiz. 32, 333 (1957);

V. M. Galitskii, Zh. Eksp. Teor. Fiz. 34, 151 (1958);

V. A. Belyakov, Zh. Eksp. Teor. Fiz. 40, 1210 (1961);

W. Czyż and K. Gottfried, Nucl. Phys. 21, 676 (1961);

R. Sartor and C. Mahaux, Phys. Rev. C 21, 1546 (1980);
Phys. Rev. C 25, 677 (1982).

In the HSDFG, as shown by Migdal n(k) in the normal Fermi gas
is discontinuous at the Fermi momentum k = kF . This
discontinuity is an inherent consequence of an arbitrary interaction
between particles in an infinite system.
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Figure: The momentum distribution n(k) in hard-sphere dilute Fermi gas
as a function of x = k/kF (c = 0.50 fm, kF = 1.40 fm−1).
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f HSDFG(ψ′) w
3

2

∞∫
|ψ′|

xn(x)dx ,

[
at

(
kF

mN

)2

� 1

]
. (1)

It follows from Eq. (1) that the HSDFG system also exhibits
superscaling.
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General consideration of the asymptotic behavior of n(k) in:

R. D. Amado and R. M. Woloshyn, Phys. Lett. B 62, 253 (1976);

R. D. Amado, Phys. Rev. C 14, 1264 (1976);

R. D. Amado and R. M. Woloshyn, Phys. Rev. C 15, 2200 (1977).

At large k , n(k) has a power-law decrease

n(k) −−−→
k→∞

[
ṼNN(k)

k2

]2

. (2)

ṼNN(k) is the Fourier transform of the NN interaction VNN(r).
For δ-forces (as in the HSDFG):

n(k) ∼ 1/k4

Under question: k or k/A must be large for Eq. (2) to apply?

Typically n(k) ∼ 1/k4+m, m > 0 (i.e. ṼNN(k) ∼ 1

km/2
).
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For k < kF : n(k) from HSDFG.

For k > kF : n(k) ∼ 1

k4+m
, (kF c = 0.70). (3)

f (ψ′) = 0.12

(
1 + m

2 + m

)
1

|ψ′|2+m
. (4)
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Figure: The scaling function in a dilute Fermi gas for different values of m
in the asymptotics of the momentum distribution n(k) ∼ 1/k4+m given in
comparison with the RFG result. The grey area shows experimental data.
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Agreement with the experimental QE scaling function is achieved
when m ' 4÷ 5 in Eqs. (3) and (4), i.e.

n(k) ∼
(k→∞)

1

k8
÷ 1

k10
. (5)

In CDFM:

n(k) ∼ 1

k8
, (6)

i.e. n(k) ∼ 1/k4+m with m = 4 .
The inverse Fourier transform gives

VNN(r) ∼ 1

r
for m = 4; VNN(r) ∼ 1

r1/2
for m = 5.

The behavior of the QE scaling function depends mainly on the
particular form of the power-law asymptotics of n(k).

A.N. Antonov, M.V. Ivanov, M.K. Gaidarov, E. Moya de Guerra,
Phys. Rev. C 75, 034319 (2007).
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3.1 CDFM (first approach)

The Wigner distribution function which corresponds to the ODM

W (r, k) =
4

(2π)3

∞∫
0

dx |F (x)|2Θ(x − |r|)Θ(kF (x)− |k|) (1)

ρ(r) =

∫
dkW (r, k) =

∞∫
0

dx |F (x)|2 3A

4πx3
Θ(x − |r|), (2)

n(k) =

∫
drW (r, k) =

4

(2π)3

∞∫
0

dx |F (x)|2 4πx3

3
Θ(kF (x)− |k|)

=
4

(2π)3

α/k∫
0

dx |F (x)|2 4

3
πx3, (3)
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kF (x) =

(
3π2

2
ρ0(x)

)1/3

≡ α

x
with α =

(
9πA

8

)1/3

' 1.52A1/3, (4)

where x is the radius of a sphere of nuclear matter containing A
nucleons.

|F(x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

at
dρ(r)

dr
≤ 0 (5)

|F(x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α

x

at
dn(k)

dk
≤ 0 (6)

∫
ρ(r)dr = A;

∫
n(k)dk = A (7)

∞∫
0

|F (x)|2dx = 1 (8)
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Our basic assumption within the CDFM is that the scaling function
for a finite nucleus f (ψ′) can be defined by means of the weight
function |F (x)|, weighting the scaling function for the RFG at
given x .

f (ψ′) =

α/(kF |ψ′|)∫
0

|F(x)|2fRFG(ψ′, x)dx (9)

f (ψ′)=
4π

A

α/(kF |ψ′|)∫
0

ρ(x)

[
x2fRFG(ψ′, x)+

x3

3

dfRFG(ψ′, x)

dx

]
dx (10)

f (ψ′) =
4π

A

∞∫
kF |ψ′|

n(k)

[
k2fRFG(ψ′, k) +

k3

3

dfRFG(ψ′, k)

dk

]
dk (11)

lim
k→∞

n(k)k3 = 0

kF =

∞∫
0

|F (x)|2α
x

dx . (12)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 22/53



3.2 CDFM (second approach)

Hadronic tensor in the CDFMII:

W µν
CDFM =

∞∫
0

|F (x)|2W µν
(RFG)(x)dx . (1)

Responses with longitudinal projections:

RL(ψ)=

∞∫
0

RL(x , ψ)|F (x)|2dx , RL(x , ψ)=RL,p(x , ψ)+RL,n(x , ψ). (2)

Responses with transverse projections:

RT (ψ)=

∞∫
0

RT (x , ψ)|F (x)|2dx , RT (x , ψ)=RT ,p(x , ψ)+RT ,n(x , ψ). (3)

Q2 = ω2 − q2 ≤ 0
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RL,n(p)(x , ψ) =
3N(Z )

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

×κ
2

τ

[
(1 + τ)W2,n(p)(τ)−W1,n(p)(τ) + W2,n(p)(τ)∆(x , ψ)

]
; (4)

RT ,n(p)(x , ψ) =
3N(Z )

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

×
[
2W1,n(p)(τ) + W2,n(p)(τ)∆(x , ψ)

]
, (5)

where

∆(x , ψ) =
τ

κ2

[1

3
(ε2

F (x) + εF (x)Γ(x) + Γ2(x)) +

+λ(εF (x) + Γ(x)) + λ2
]
− (1 + τ) (6)

with

Γ(x) ≡ max

[
(εF (x)− 2λ), γ– ≡ κ

√
1 +

1

τ
− λ

]
(7)
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and

W1,p(τ) = τG 2
M,p(τ), W1,n(τ) = τG 2

M,n(τ) (8)

W2,p(τ) =
1

1 + τ

[
G 2

E ,p(τ) + τG 2
M,p(τ)

]
(9)

W2,n(τ) =
1

1 + τ

[
G 2

E ,n(τ) + τG 2
M,n(τ)

]
. (10)

κ = q/2mN , λ = ω/2mN , τ = κ2 − λ2,

η ≡ |p|/mN , ε ≡ E (p)/mN =
√

1 + η2, (11)

ηF (x)=
kF (x)

mN
=

α

xmN
, εF (x)=

√
1 + η2

F (x)=

√
1+

(
α

xmN

)2

(12)

We label
d2σ

dΩdε′
by CCDFM(ψ):

CCDFM(ψ) ≡ d2σ

dΩdε′
=

= σM

{(
Q2

q2

)2

RL(ψ) +

[
1

2

∣∣∣∣Q2

q2

∣∣∣∣+ tan2 θ

2

]
RT (ψ)

}
. (13)
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Single-nucleon eN elastic cross section:

SQE = σM

{(
Q2

q2

)2

GQE
L (τ) +

[
1

2

∣∣∣∣Q2

q2

∣∣∣∣+ tan2 θ

2

]
GQE

T (τ)

}
, (14)

where single-nucleon functions GL and GT are given by:

GQE
L (τ) =

κ

2τ
[ZG 2

E ,p(τ) + NG 2
E ,n(τ)] +O(η2

F ) (15)

GQE
T (τ) =

τ

κ
[ZG 2

M,p(τ) + NG 2
M,n(τ)] +O(η2

F ). (16)

Superscaling function is evaluated by

fCDFM(ψ) = kF ×
CCDFM(ψ)

SQE
, (17)

and longitudinal L and transverse T scaling functions are
introduced:

fL(ψ) = kF ×
RL(ψ)

GQE
L

, fT (ψ) = kF ×
RT (ψ)

GQE
T

. (18)
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Figure: The quasielastic scaling function f QE(ψ′) for 12C, 27Al, 56Fe, and
197Au calculated in the CDFMI. The experimental data are taken from
T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212 (1999);
Phys. Rev. C 60 (1999) 065502.
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f

f
Figure: The quasielastic scaling function f QE(ψ′) for 12C, 27Al, 56Fe, and
197Au calculated in the CDFMII. The experimental data are taken from
T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212 (1999);
Phys. Rev. C 60 (1999) 065502.
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Figure: The nucleon momentum distribution n(k). Gray area: combined
results of CDFM for 4He, 12C, 27Al, 56Fe and 197Au. Solid line:
mean-field result using Woods-Saxon single-particle wave functions (for
56Fe). The normalization is:

∫
n(k)d3k = 1.
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Figure: The ratio fL(ψ)/fT (ψ) for 12C calculated in the CDFMII and
RPWIA (Lorentz gauge) for q = 300, 500, 800, and 1000 MeV/c.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 30/53



- 1 0 1 2 3- 0 . 0 2

- 0 . 0 1

0 . 0 0

0 . 0 1

0 . 0 2 R P W I A  ( L o r e n t z  g a u g e )
 q  =  1 0 0 0  M e V / c
 q  =    8 0 0  M e V / c
 q  =    5 0 0  M e V / c

C D F M I I
 q  =  1 0 0 0  M e V / c
 q  =    8 0 0  M e V / c
 q  =    5 0 0  M e V / c
 q  =    3 0 0  M e V / c

 

 

f T(
ψ

)-f L
(ψ

)

ψ

Figure: The differences fT (ψ)− fL(ψ) for 12C calculated in the CDFMII

and RPWIA (Lorentz gauge) for q = 300, 500, 800, and 1000 MeV/c.
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Figure: The quasielastic scaling function f QE(ψ′) for 12C calculated in
the CDFMII for q = 300− 1000 MeV/c with step 100 MeV/c .
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Figure: The quasielastic scaling function f QE(ψ′) for 12C calculated in
the CDFM using parabolic form (a) and exponential form (b).
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Figure: The CDFM scaling function f ∆(ψ′∆) in the ∆-region (solid red line).
Averaged experimental values of f ∆(ψ′∆) are taken from:
J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, A. Molinari, and
I. Sick, Phys. Rev. C 71, 015501 (2005).
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– Following:

J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly,
A. Molinari, and I. Sick, Phys. Rev. C 71, 015501 (2005).

the CC neutrino cross section in the target laboratory frame is
given in the form [

d2σ

dΩdk ′

]
χ

≡ σ0F2
χ, (1)

where χ = + for neutrino-induced reactions (for example, νl + n→ `− + p,
where ` = e, µ, τ) and χ = − for antineutrino-induced reactions (for example,
νl + p → `+ + n),

σ0 ≡
(G cos θc)2

2π2

[
k ′ cos θ̃/2

]2

, (2)

where G = 1.16639× 10−5 GeV−2 is the Fermi constant, θc is the Cabibbo
angle (cos θc = 0.9741),

tan2 θ̃/2 ≡ |Q
2|

v0
, v0 ≡ (ε+ ε′)2 − q2 = 4εε′ − |Q2|. (3)

Instead of the RFG scaling functions in the QE and ∆ regions, we
use those obtained in the CDFM.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 30◦ and εν = 1 GeV. (a) QE contributions: solid line: the result of
CDFM with c1 = 0.63; dashed line: CDFM with c1 = 0.72; dotted line: RFG;
dot-dashed line: SuSA result; double dot-dashed line: the result for the
∆-contribution from the CDFM. (b) the sum of QE- and ∆-contributions in
RFG model (dotted line), in the CDFM with c1 = 0.63 (solid line) and
c1 = 0.72 (dashed line).
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 60◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1.5 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 2 GeV.
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Figure: The cross section of charge-changing antineutrino (νµ,µ+) reaction on
12C at θµ = 45◦ and εν = 1 GeV.

A.N. Antonov, M.V. Ivanov et al., Phys. Rev. C 74, 054603 (2006);
Phys. Rev. C 75, 064617 (2007); Phys. Rev. C 77, 034612 (2008);
Phys. Rev. C 79, 044602 (2009).
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Following procedure for calculating the inclusive cross section in
the u-channel from work:

J. E. Amaro, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly,
Phys. Rev. C 73, 035503 (2006) – SuperScaling Analysis (SuSA).

The RFG scaling function is found to be:

FRFG(ψ
(u)
RFG) =

3

4
kF

(
1− ψ(u)2

RFG

)
Θ
(

1− ψ(u)2
RFG

)
. (1)

We weight the FRFG(ψ
(u)
RFG) by means of the CDFM function

|F (x)|2.

A.N. Antonov, M.V. Ivanov, M.B. Barbaro, J.A. Caballero,
E. Moya de Guerra, and M. K. Gaidarov, Phys. Rev. C 75,
064617 (2007).
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Figure: Quasielastic differential cross section for neutral current neutrino
scattering at 1 GeV from 12C for proton knockout at θp = 20◦ (a,b) and 60◦

(c,d).
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Figure: Quasielastic differential cross section for neutral current antineutrino
scattering at 1 GeV from 12C for proton knockout.
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Figure: Quasielastic differential cross section for neutral current neutrino
scattering at 1 GeV from 12C for neutron knockout.
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Figure: Quasielastic differential cross section for neutral current antineutrino
scattering at 1 GeV from 12C for neutron knockout.
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Conclusions:

1 It is pointed out that f (ψ′) for ψ′ < −1 depends on the
particular form of the power-law asymptotics of n(k) at large k and thus,
is informative for the in-medium NN forces around the core.

2 The total f (ψ), the longitudinal fL(ψ) and the transverse fT (ψ) scaling
functions are calculated within a new, more general approach within the
Coherent Density Fluctuation Model (CDFMII) by taking as starting point
the hadronic tensor and the L- and T - response functions in the RFG
model.

3 The approach leads to a slight violation of the zero-kind scaling [fL(ψ) 6=
fT (ψ)] in contrast with the situation in the RFG and CDFMI models. It is
found that the ratio fL(ψ)/fT (ψ) in the CDFMII has similarities with that
from the RPWIA approach (with Lorentz gauge) for positive ψ.

4 At q & 0.7 GeV/c the CDFMII scaling function exhibits scaling of first
kind and has a saturation of its asymptotic behavior.

5 The CDFM scaling functions are applied to calculate cross sections of
inclusive electron scattering in the quasielastic and ∆-regions for nuclei
with 12 ≤ A ≤ 208 at different energies and angles. The results are in
agreement with available experimental data, especially in the QE region.

6 The CDFM scaling functions are applied to calculate charge-changing
neutrino (antineutrino) scattering and also QE scattering via the weak
neutral current on 12C at 1÷ 2 GeV incident energy.
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Inclusive electron scattering (e, e ′)

~q = ~pe − ~pe′ ,

ω = Te − Te′ ,

momentum and energy transferred by the probe to the constituent
of the composite system.

κ ≡ q/2mN – dimensionless transferred momentum,

λ ≡ ω/2mN – dimensionless transferred energy,

τ ≡ |Q2|/4m2
N = κ2 − λ2 – dimensionless absolute value of the

squared 4-transferred momentum.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.

At low energy loss peaks
due to elastics scattering
and inelastic excitation of
discrete nuclear states
appear.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.

At larger energy loss, a broad peak due to quasi-elastic electron-nucleon scattering
appears; this peak - very wide due to nuclear Fermi motion - corresponds to processes
where the electron scatters from an individual, moving nucleon, which, after interaction
with other nucleons, is ejected from the target.

One finds that in the relevant energy range in the region below the QE peak
scaling of the second kind is found to be excellent and scaling of the first kind to
be quite good.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.

Above the peak scaling of the second kind is good; however, scaling of the first
kind is clearly violated. The last occurs for well-understood reasons, namely, in
that region one has processes other than quasi-free knockout of nucleons playing
an important role.

At larger energy loss, a broad peak due to quasi-elastic electron-nucleon scattering
appears; this peak - very wide due to nuclear Fermi motion - corresponds to processes
where the electron scatters from an individual, moving nucleon, which, after interaction
with other nucleons, is ejected from the target.
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Figure: Schematic representation of inclusive electron cross section as
function of energy loss.
At even larger peaks that correspond to excitation of the nucleon to
distinct resonances are visible - .

At very large , a structureless continuum due to Deep
Inelastic Scattering on quarks bound in nucleons appears.
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Relativistic Fermi Gas (RFG) (without interaction between the
nucleons)
kF – Fermi momentum
ηF = kF/mN – dimensionless Fermi momentum

ξF =
√

1 + η2
F − 1 – dimensionless Fermi kinetic energy

ω′ ≡ ω − Eshift ,
Eshift is chosen empirically. It accounts for the effects of both the
binding in the initial state and the interaction strength in the final
state

λ′ ≡ ω′/2mN , τ ′ ≡ κ2 − λ′2.
Dimensionless scaling variable ψ′:

ψ′ =
1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(1 + τ ′)

. (1)

The physical meaning of ψ′2 (in units of the Fermi energy) is the
smallest kinetic energy that one of the nucleons responding to an
external probe can have.
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F (κ, ψ′) ≡ d2σ/dΩedω′

σM [vLGL(κ, λ′) + vT GT (κ, λ′)]
(2)

σM – Mott cross section; d2σ/dΩedω′ – the cross section of the
inclusive electron scattering;
vL, vT – Rosenbluth lepton kinematical factors;
GL, GT – single-nucleon responses expressed by Sachs form
factors, functions of τ ′, GEp,n and GMp,n .

In the Relativistic Fermi Gas model the spectral function:

S̃RFG(p, E) =
3A

8πk3
F

θ(kF − p)δ
[
E(p)− ERFG(p)

]
; (3)

ERFG(p) =

(√
k2

F + m2
N −

√
p2 + m2

N

)
. (4)
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F (q, y)
q→∞−→ F (y) = 2π

∞∫
−|y |

pdpñ(y , p), (5)

ñ(y , p) =

E−∫
0

dE S̃(p, E), (6)

lim
q→∞

E−(q, y , p) = y + p−

−
(√

((M0
A−1)2 + p2)−

√
((M0

A−1)2 + y 2)
)
, (7)

F RFG
L (ψ′) =

3ξF

2mNη
3
F

(1− ψ′2)θ(1− ψ′2)

[
1 +

1

2
ξF (1 + ψ′2)

]
. (8)

In the RFG model:

F RFG = F RFG
T = F RFG

L . (9)
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Dimensionless scaling function:

fRFG(ψ′) =kF · F RFG(ψ′) =
3

4
(1− ψ′2)Θ(1− ψ′2)

1

η2
F

×

×
{
η2

F + ψ′
2
[

2 + η2
F − 2

√
1 + η2

F

]}
'

'
(η2

F�1)

3

4
(1− ψ′2)Θ(1− ψ′2) (10)

M. Barbaro et al., Nucl. Phys. A 643, 137 (1998).
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The scaling function shows:

scaling of the first kind: a very weak dependence of f (ψ′) on
the momentum transfer q & 500 MeV/c (below the
quasielastic peak);

scaling of the second kind: independence of the mass number
A for a wide range of nuclei from 4He to 197Au.

When both types of scaling occur one says that the reduced cross
section exhibit superscaling.

T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212 (1999);
Phys. Rev. C 60, 065502 (1999).

However, in RFG f QE
RFG(ψ′) = 0 for ψ′ ≤ −1, whereas the

experimental scaling function f QE(ψ′) extends to ψ′ ≈ −2 in the
data for (e, e ′) processes.
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Thus, it became necessary to consider the superscaling in
theoretical methods which go beyond the RFG. One of them is the
Coherent Density Fluctuation Model (CDFM) that is a natural
extension of the Fermi gas case to realistic finite nuclear system
beyond the mean field approximation. The accounting for NN
correlations in CDFM in the momentum and density distribution
made it possible to reproduce the available experimental data for
ψ′ < 0, including ψ′ . −1.

A. N. Antonov, V. A. Nikolaev, and I. Zh. Petkov, Bulg. J. Phys. 6,
151 (1979); Z. Phys. A 297, 257 (1980); ibid. 304, 239 (1982);
Nuovo Cimento A 86, 23 (1985).

A. N. Antonov, P. E. Hodgson, and I. Zh. Petkov, Nucleon
Momentum and Density Distributions in Nuclei (Clarendon Press,
Oxford, 1988); Nucleon Correlations in Nuclei (Springer-Verlag,
Berlin-Heidelberg-New York, 1993).
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Figure: Scaling function f (ψ′) in the CDFM (solid line) at q = 1560 MeV/c
for 4He, 12C, 27Al, and 197Au. The experimental data are given by the shaded
area. The RFG result is shown by dotted line.
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Aims of the present work:

I To consider the NN forces in the nuclear medium and their
effect on the components of the nucleon momentum
distribution in relation to the superscaling analysis. To study
the role of n(k) on the behavior of the quasielastic (QE)
scaling function.

II To extend the superscaling analysis of the QE electron
scattering to predict charge-changing (CC) neutrino-nucleus
scattering cross sections in the QE and ∆-region.

III To extend the superscaling analysis for calculations of QE
scattering via the weak neutral current (NC) of neutrinos and
antineutrinos from nuclei.
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For this purpose for point I:

1 We use firstly the momentum distribution in a hard-sphere
dilute Fermi gas model (HSDFG) to calculate the scaling
function.

2 We attempt to throw light on the connection between the
generally established high-momentum asymptotics of n(k) and
the QE scaling function. This makes it possible to establish
(at least approximately) the particular form of the power-law
decrease of n(k) at large values of k and thus, to extract
additional information about the NN forces from the
description of the superscaling phenomenon.
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The hard-sphere dilute Fermi gas (HSDFG) is a low density gas of
fermions that interact via a repulsive hard-core potential.

A. B. Migdal, Zh. Eksp. Teor. Fiz. 32, 333 (1957);
[Sov. Phys. JETP 5, 333 (1957)];

V. M. Galitskii, Zh. Eksp. Teor. Fiz. 34, 151 (1958);
[Sov. Phys. JETP 7, 104 (1958)];

V. A. Belyakov, Zh. Eksp. Teor. Fiz. 40, 1210 (1961);
[Sov. Phys. JETP 13, 850 (1961)];

W. Czyż and K. Gottfried, Nucl. Phys. 21, 676 (1961);

R. Sartor and C. Mahaux, Phys. Rev. C 21, 1546 (1980);
Phys. Rev. C 25, 677 (1982).
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In the HSDFG: parameter kF c , where c denotes the hard-core
radius of NN interactions or it is identified with the scattering
length in free space , kF is the Fermi momentum. Usually:
kF c = 0.70 (c = 0.50 fm, kF = 1.40 fm−1). As shown by Migdal
n(k) in the normal Fermi gas is discontinuous at the Fermi
momentum k = kF . This discontinuity is an inherent consequence
of an arbitrary interaction between particles in an infinite system.
In the HSDFG:

n(k)=n<(k)+n>(k) with

{
n<(k)=0 for k>kF

n>(k)=0 for k<kF

. (1)
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Figure: The momentum distribution n(k) in hard-sphere dilute Fermi gas
as a function of x = k/kF .
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At k < kF :

n<(k)=1− ν−1

3π2x
(kF c)2

[
(7 ln 2−8)x3 + (10−3 ln 2)x+

+2 ln
1+x

1−x
−2(2−x2)3/2 ln

(2−x2)1/2+x

(2−x2)1/2−x

]
, (2)

where x = k/kF and ν = 4 is adopted.
At 1 < x <

√
2:

n>(k)=
ν−1

6π2x
(kF c)2

{
(7x3− 3x−6) ln

x−1

x +1
+

+(7x3− 3x +2) ln 2−8x3+22x2+6x−24+

+2(2−x2)3/2

{
ln

2+x +(2−x2)1/2

2+x−(2−x2)1/2
+

+ ln
1+(2−x2)1/2

1−(2−x2)1/2
− 2 ln

x +(2−x2)1/2

x−(2−x2)1/2

}}
. (3)
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At
√

2 < x < 3:

n>(k)=
ν−1

6π2x
(kF c)2

{
(7x3− 3x−6) ln

x−1

x +1
−8x3+22x2+

+6x−24 + (7x3− 3x +2) ln 2−4(x2−2)3/2×

×
{

arctan
(x +2)

(x2−2)1/2
+arctan

1

(x2−2)1/2
−

− 2 arctan
x

(x2−2)1/2

}}
. (4)

At x > 3:

n>(k)=2
ν−1

3π2x
(kF c)2

{
2 ln

x +1

x−1
−2x +(x2 − 2)3/2×

×
{

2 arctan
x

(x2−2)1/2
−arctan

x − 2

(x2−2)1/2
−

− arctan
(x + 2)

(x2−2)1/2

}}
. (5)
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f HSDFG(ψ′) =
3

2

∞∫
|ζ|/ηF

xn(x)dx , (6)

ηF = kF/mN

ζ = ψ′
{[√

1 + η2
F − 1

][
2 + ψ′2

(√
1 + η2

F − 1
)]}1/2

. (7)

Since η2
F � 1:

f HSDFG(ψ′) w
3

2

∞∫
|ψ′|

xn(x)dx . (8)

It follows from Eq. (8) that the HSDFG system also exhibits
superscaling.
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Figure: The scaling function f (ψ′) in HSDFG calculated for different
values of kF c in comparison with the RFG model result. The grey area
shows experimental data.
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Figure: The same as in previous Figure but in linear scale.
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The scaling function is extended for large negative values of ψ′ in
contrast to the case of the RFG scaling function but the agreement
with the experimental data is poor. The step behavior of the
scaling function reflects the discontinuity of n(k) at k = kF .
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General consideration of the asymptotic behavior of n(k) in:

R. D. Amado and R. M. Woloshyn, Phys. Lett. B 62, 253
(1976);

R. D. Amado, Phys. Rev. C 14, 1264 (1976);

R. D. Amado and R. M. Woloshyn, Phys. Rev. C 15, 2200
(1977).
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At large k , n(k) has a power-low decrease

n(k) −−−→
k→∞

[
ṼNN(k)

k2

]2

. (1)

ṼNN(k) is the Fourier transform of the NN interaction VNN(r).
For δ-forces (as in the HSDFG):

n(k) ∼ 1/k4

Under question: k or k/A must be large for Eq. (1) to apply?

Typically n(k) ∼ 1/k4+m, m > 0 (i.e. ṼNN(k) ∼ 1

km/2
).
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Figure: The momentum distribution in HSDFG n(x) multiplied by
x4 = (k/kF )4.
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It can be seen that n(k) in the HSDFG decreases like ∼ 1/k4+m

with a small value of m.

Next: we study the question about the general feature of ṼNN(k)
that results in n(k) with a power-law behavior that best
agrees with the scaling function.

We assume VNN(r) different from a δ-function and calculate the
scaling function f (ψ′) using different asymptotics for n(k) in the
dilute Fermi gas at k > kF . We look for the proper value of m.
For k < kF we use n(k) [Eq. (2) from HSDFG].
For k > kF (kF c = 0.70):

n(k) = N
1

k4+m
, (2)

N =
0.24

3
(1 + m)k4+m

F . (3)
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The total normalization is:

3

4πk3
F

∫
n(~k)d3~k = 1. (4)

Finally

f (ψ′) = 0.12

(
1 + m

2 + m

)
1

|ψ′|2+m
. (5)
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Figure: The scaling function in a dilute Fermi gas for different values of m
in the asymptotics of the momentum distribution n(k) ∼ 1/k4+m given in
comparison with the RFG result. The grey area shows experimental data.
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Agreement with the experimental QE scaling function is achieved
when m ≈ 4.5 in Eqs. (2), (3) and (5), i.e.

n(k) ≈ 1

k8.5
. (6)

In CDFM:

n(k) ∼ 1

k8
, (7)

i.e. n(k) ∼ 1/k4+m with m = 4 .
The inverse Fourier transform gives

VNN(r) ∼ 1

r
for m = 4; VNN(r) ∼ 1

r 1/2
for m = 5.

The behavior of the QE scaling function depends mainly on the
particular form of the power-law asymptotics of n(k).
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Conclusions from point I:

i) The superscaling considered within the model of dilute Fermi
gas with interactions between particles gives an improvement over
the results of the relativistic noninteracting Fermi gas model,
allowing one to describe the QE scaling function for ψ′ < −1,
whereas the RFG model gives f (ψ′) = 0 in this region.

ii) It is established that the hard-sphere (with delta-forces between
nucleons) approximation for the dilute Fermi gas is quite a rough
one. The use of more realistic NN forces leading to m ' 4.5
instead of m = 0 (for delta-force) in the well-known power-law
asymptotics of the momentum distribution n(k) ∼ 1/k4+m at large
k leads to a good explanation of the data for the ψ′-scaling
function in inclusive electron scattering from a wide range of nuclei.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 38/111



Conclusions from point I:

i) The superscaling considered within the model of dilute Fermi
gas with interactions between particles gives an improvement over
the results of the relativistic noninteracting Fermi gas model,
allowing one to describe the QE scaling function for ψ′ < −1,
whereas the RFG model gives f (ψ′) = 0 in this region.

ii) It is established that the hard-sphere (with delta-forces between
nucleons) approximation for the dilute Fermi gas is quite a rough
one. The use of more realistic NN forces leading to m ' 4.5
instead of m = 0 (for delta-force) in the well-known power-law
asymptotics of the momentum distribution n(k) ∼ 1/k4+m at large
k leads to a good explanation of the data for the ψ′-scaling
function in inclusive electron scattering from a wide range of nuclei.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 38/111



iii) The asymptotics of n(k) ∼ 1/k8.5 found in the dilute Fermi gas
by optimal fit to the data for f (ψ′) is similar to that in the CDFM
(∼ 1/k8) which, being a theoretical correlation model, describes
the superscaling in the quasielastic part of the electron-nucleus
scattering. Thus, the momentum distribution in the dilute
Fermi-gas model with realistic NN forces can serve as an
“effective” momentum distribution (a step-like one with a
discontinuity) which gives a similar result for f (ψ′) as the
correlation methods for realistic finite nuclear systems. It can be
concluded that the momentum distribution with asymptotics from
∼ 1/k8 to ∼ 1/k8.5 is the proper one for explaining the
phenomenological shape of the scaling function obtained from
inclusive QE electron scattering.
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The superscaling is due to the specific high-momentum tail of n(k)
similar for all nuclei which is known to be caused by the
short-range and tensor correlations related to peculiarities of the
NN forces near their core.

The main result of the present work might be the observation that
the values of f (ψ′) for ψ′ < −1 depend on the particular form of
the power-law asymptotics of n(k) at large k which is related to a
corresponding particular behavior of the in-medium NN forces
around the core.

We point out that the power-law decrease of n(k) as ∼ 1/k4+m

with m ' 4.5 in the interacting dilute Fermi gas is the proper one
and it is close to that obtained in CDFM (m = 4) which describes
the superscaling correctly as well.
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The NN force for m = 4 is expected to go as VNN(r) ∼ 1/r and
for m = 5 to go as VNN(r) ∼ (1/r)1/2.

The conclusion is that the important property of the repulsive
short-range core (leading to NN correlations and high-momentum
tail of n(k)) is that it goes to infinity for r → 0 as 1/r or softer.

The link between the asymptotic behavior of n(k) and NN force
implies that inclusive QE electron scattering from nuclei provides
important information on the NN forces in the nuclear medium.
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4.1 Basic Relationship of the Coherent Density Fluctuation Model

Generator Coordinate Method Equations

Ψ(r1, ..., rA) =

∫
F (x1, x2, ...)Φ(r1, ..., rA; x1, x2, ...)dx1dx2... (1)

– The Hill-Wheeler equation∫
[H(x , x ′)− EI(x , x ′)]F (x ′)dx ′ = 0 (2)

– The overlap and energy kernels

I(x , x ′) = 〈Φ({ri}, x)|Φ({ri}, x ′)〉 (3)

H(x , x ′) = 〈Φ({ri}, x)|Ĥ|Φ({ri}, x ′)〉 (4)

– For many-fermion systems the kernels I(x , x ′) and H(x , x ′) peak
strongly at x ∼ x ′

I(x , x ′) ' I(x , x)G(x − x ′) (5)

H(x , x ′) ' H(x , x)G(x − x ′) (6)
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Coherent Density Fluctuation Model

– Delta-function approximation

I(x , x ′)→ δ(x − x ′) (7)

H(x , x ′)→ − ~2

2meff
δ′′(x − x ′) + V

(
x + x ′

2

)
δ(x − x ′) (8)

and the weight function is determined under the condition

∞∫
0

|F (x)|2dx = 1 (9)

leads to the relationships:∫
Φ∗(r, r2, ..., rA, x

′)Φ(r′, r2, ..., rA, x)dr2...drA
∼= ρx ,x (r, r′)δ(x−x ′)

(10)
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ρx ,x (r, r′) ≡ ρx (r, r′) =

=
A

〈Φ|Φ〉x

∫
Φ∗(r, r2, ..., rA, x)Φ(r′, r2, ..., rA, x)dr2...drA, (11)

where

〈Φ|Φ〉x ≡
∫

Φ∗(r1, ..., rA, x)Φ(r1, ..., rA, x)dr1...drA; (12)

– In the CDFM the generating function Φ({ri}, x) describes a
system corresponding to a piece of nuclear matter with a one-body
density matrix

ρx (r, r′) = 3ρ0(x)
j1(kF (x)|r − r′|)
(kF (x)|r − r′|)

Θ

(
x − |r + r′|

2

)
(13)
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and uniform density

ρx (r) = ρ0(x)Θ(x − |r|), (14)

where

ρ0(x) =
3A

4πx3
(15)

and the generator coordinate x is the radius of a sphere containing
all A nucleons in it.

kF (x) =

(
3π2

2
ρ0(x)

)1/3

≡ α

x
with α =

(
9πA

8

)1/3

' 1.52A1/3

(16)
is the Fermi momentum of such a piece of nuclear matter.
One-body density matrix (ODM) of the system in the CDFM

ρ(r, r′) =

∞∫
0

dx |F (x)|2ρx (r, r′) (17)
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The Wigner distribution function which corresponds to the ODM

W (r, k) =
4

(2π)3

∞∫
0

dx |F (x)|2Θ(x − |r|)Θ(kF (x)− |k|) (18)

ρ(r) =

∫
dkW (r, k) =

∞∫
0

dx |F (x)|2 3A

4πx3
Θ(x − |r|), (19)

n(k) =

∫
drW (r, k) =

4

(2π)3

∫ ∞
0

dx |F (x)|2 4πx3

3
Θ(kF (x)−|k|)

=
4

(2π)3

∫ α/k

0
dx |F (x)|2 4

3
πx3 (20)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 48/111



|F(x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

at
dρ(r)

dr
≤ 0 (21)

|F(x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α

x

at
dn(k)

dk
≤ 0 (22)

∫
ρ(r)dr = A;

∫
n(k)dk = A (23)

∞∫
0

|F (x)|2dx = 1 (24)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 49/111



Our basic assumption within the CDFM is that the scaling function
for a finite nucleus f (ψ′) can be defined by means of the weight
function |F (x)|, weighting the scaling function for the RFG at
given x .

f (ψ′) =

α/(kF |ψ′|)∫
0

dx |F (x)|2 3

4

[
1−

(
kF xψ′

α

)2
]
×

×

1 +
(xmN

α

)2
(

kF xψ′

α

)2
2 +

(
α

xmN

)2

−2

√
1 +

(
α

xmN

)2


(25)
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f (ψ′) =

α/(kF |ψ′|)∫
0

|F(x)|2f (ψ′, x)dx (26)

|F(x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

, ρ0(x) =
3A

4πx3
, α =

(
9πA

8

)1/3

(27)

f (ψ′) =
4π

A

α/(kF |ψ′|)∫
0

ρ(x)

[
x2f (ψ′, x) +

x3

3

df (ψ′, x)

dx

]
dx (28)

f (ψ′, x) =
3

4

[
1−

(
kF xψ′

α

)2
]{

1 +
(xmN

α

)2
(

kF xψ′

α

)2

×

×

2 +

(
α

xmN

)2

− 2

√
1 +

(
α

xmN

)2
 (29)
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|F (x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α

x

(30)

f (ψ′) =
4π

A

∞∫
kF |ψ′|

n(k)

[
k2f (ψ′, k) +

k3

3

df (ψ′, k)

dk

]
dk (31)

lim
k→∞

n(k)k3 = 0 (32)

f (ψ′, k) =
3

4

[
1−

(
kFψ

′

k

)2
]{

1 +
(mN

k

)2
(

kFψ
′

k

)2

×

×

2 +

(
k

mN

)2

− 2

√
1 +

(
k

mN

)2
 (33)
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4.2 CDFMI Scaling Functions in the QE Region

The total scaling function is expressed by the sum of the proton
f QE
p (ψ′) and neutron f QE

n (ψ′) scaling functions, which are
determined by the proton and neutron densities ρp(r) and ρn(r)
(or by corresponding momentum distributions), respectively:

f QE (ψ′) =
1

A
[Zf QE

p (ψ′) + Nf QE
n (ψ′)]. (34)

f QE
p (ψ′) and f QE

n (ψ′) scaling functions can to present as sums of

scaling functions for negative (f QE
p(n),1(ψ′)) and positive (f QE

p(n),2(ψ′))

values of ψ′:

f QE
p(n)(ψ′) = f QE

p(n),1(ψ′) + f QE
p(n),2(ψ′). (35)

We include a parameter c1 which gives correct maximum value and
also an asymmetric tail in f QE(ψ′) for ψ′ ≥ 0.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 53/111



f QE
p(n),1(ψ′)=

αp(n)/(k
p(n)
F |ψ′|)∫

0

dR|Fp(n)(R)|2f
p(n)

RFG,1(ψ′(R)), ψ′≤0, (36)

f QE
p(n),2(ψ′)=

c2αp(n)/(k
p(n)
F ψ′)∫

0

dR|Fp(n)(R)|2f
p(n)

RFG,2(ψ′(R)), ψ′≥0, (37)

where

f
p(n)

RFG,1(ψ′(R)) = c1

1−

(
k

p(n)
F R|ψ′|
αp(n)

)2
 , ψ′ ≤ 0 (38)

and a exponential form of f
p(n)

RFG,2(ψ′(R))

f
p(n)

RFG,2(ψ′(R)) = c1 exp

[
−

k
p(n)
F Rψ′

c2αp(n)

]
, ψ′ ≥ 0. (39)
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or a parabolic form of f
p(n)

RFG,2(ψ′(R))

f
p(n)

RFG,2(ψ′(R)) = c1

1−

(
k

p(n)
F Rψ′

c2αp(n)

)2
 , ψ′ ≥ 0. (40)

The proton and neutron weight functions are obtained from the
corresponding proton and neutron densities

∣∣Fp(n)(R)
∣∣2 = − 4πR3

3Z (N)

dρp(n)(r)

dr

∣∣∣∣
r=R

, (41)

αp(n) =

[
9πZ (N)

4

]1/3

, (42)

∞∫
0

ρp(n)(r)dr = Z (N) (43)
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Fermi-momentum for the protons and neutrons can be calculated
using the expression

k
p(n)
F = αp(n)

∞∫
0

dR
1

R
|Fp(n)(R)|2. (44)

The functions are normalized as follows:

∞∫
0

|Fp(n)(R)|2dR = 1,

∞∫
−∞

f QE
p(n)(ψ′)dψ′ = 1. (45)

⇒
∞∫
−∞

f QE(ψ′)dψ′ = 1 (46)
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c2 =
3

2c1
− 1 in the case of Eq. (40)

c2 =
1− (2/3)c1

0.632c1
in the case of Eq. (39)

It was shown in the case of the electron scattering that the results
obtained when asymmetric scaling function f QE(ψ′) (cQE

1 = 0.63) with

f
p(n)

RFG,2(ψ′(R)) from Eq. (6) is used agree with the data in cases when the
transferred momentum in the position of the maximum of the QE peak
extracted from data is qQE

exp < 450 MeV/c ≈ 2kF and underestimate them

when qQE
exp ≥ 450 MeV/c in the region close to the QE peak.

In the case of almost symmetric scaling function f QE(ψ′) (cQE
1 = 0.72)

the results agree with the data in the region of the QE peak in cases

when qQE
exp ≥ 450 MeV/c ≈ 2kF and overestimate them when

qQE
exp < 450 MeV/c.
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Figure: The quasielastic scaling function f QE(ψ′) for 12C calculated in
the CDFM using parabolic form (a) and exponential form (b).
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Figure: Inclusive electron scattering on 12C at ε = 1108 MeV and θ = 37.5◦

(qQE
exp = 675 MeV/c > 2kF ). The results obtained using cQE

1 = 0.73 in the
CDFM scaling function for the QE cross section and the total result are given
by dashed and red solid line, respectively. Dotted line: using CDFM ∆-scaling
function. Thin green line: total CDFM result with cQE

1 = 0.63. Dot-dashed
line: using QE- and ∆-scaling functions obtained in the LFD approach.
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Figure: Inclusive electron scattering on 12C at ε = 1500 MeV and θ = 13.5◦

(qQE
exp = 352 MeV/c ≤ 2kF ). The results obtained using cQE

1 = 0.72 in the
CDFM scaling function for the QE cross section and the total result are given
by dashed and red solid line, respectively. Dotted line: using CDFM ∆-scaling
function; green solid line: total CDFM result with cQE

1 = 0.63. Dash-dotted
line: result of ERFG method.
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Figure: Nucleon momentum distribution n(k) from: i) CDFM results for 4He,
12C, 27Al, 56Fe and 197Au are combined by shaded area (nCDFM); ii) “y-scaling
data” given by open squares, circles and triangles for 4He, 12C, and 56Fe,
respectively; iii) mean-field calculations using Woods-Saxon single-particle wave
functions for 56Fe (nWS).
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Let’s consider the basic formalism for inclusive electron scattering
from nuclei in which an electron with four-momentum Kµ = (ε, k)
is scattered through an angle θ = ](k, k′) to four-momentum
K′µ = (ε′, k′). The four-momentum transferred in the process is
then Qµ = (K−K′)µ = (ω,q), where ω = ε− ε′, q = |q| = k− k′,
and Q2 = ω2 − q2 ≤ 0. For extreme relativistic limit |k| ∼= ε� me

and |k′| ∼= ε′ � me , where me is the electron mass.
In the one-photon-exchange approximation, the double-differential
cross section in the laboratory system can be written in the form

d2σ

dΩdε′
= σM

{(
Q2

q2

)2

RL(q, ω) +

[
1

2

∣∣∣∣Q2

q2

∣∣∣∣+ tan2 θ

2

]
RT (q, ω)

}
, (1)

where L (T ) refer to responses with longitudinal (transverse)
projections (i.e., with respect to the momentum transfer direction)
of the nuclear currents, and where the Mott cross section is given

by σM =

[
α cos(θ/2)

2ε sin2(θ/2)

]2

, where α the fine-structure constant.
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This cross section is obtained by contracting leptonic and hadronic
current-current interaction electromagnetic tensors and so is
proportional to ηµνW µν . The leptonic tensor may be calculated in
the standard way involving traces of Dirac γ matrices, yielding

ηµν = KµK
′
ν + K′µKν − gµνK ·K′ (2)

Contracting this with a general hadronic tensor W µν and rewriting
the cross section in Eq. (1), we have the following for the two
response functions (summation convention on repeated indices):

RL(q,w) = W 00and RT (q,w) = −
(

gij +
qi qj

q2

)
W ij (3)

Hadronic tensor in the RFG model can be expressed:

W µν =
3Nm2

N

4πp3
F

∫
d3p

E (p)E (p + q)
θ(pF − |p|)θ(|p + q| − pF )×

×δ[ω − [E (p + q)− E (p)]]f µν(P + Q,P), (4)
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where f µν(P + Q,P) is the single-nucleon response tensor
obtained by Lorentz transforming the measured response involving
the system where the struck nucleon is at rest to the system where
the struck nucleon has four-momentum P:

f µν(P + Q,P) = −W1(τ)

(
gµν − QµQν

Q2

)
+

+W2(τ)
1

m2
N

(
Pµ − P.Q

Q2
Qµ

)(
Pν − P.Q

Q2
Qν

)
(5)

Response functions in the RFG model can be written:

RL,T =
3N

4mNκη
3
F

(εF − Γ)Θ(εF − Γ)×

×


κ2

τ
[(1 + τ)W2(τ)−W1(τ) + W2(τ)∆] for L

[2W1(τ) + W2(τ)∆] for T
, (6)
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where

W1(τ) = τG 2
M(τ), W2(τ) =

1

1 + τ
[G 2

E (τ) + τG 2
M(τ)] (7)

κ = q/2mN , λ = ω/2mN , τ = κ2 − λ2,

η ≡ |p|/mN , ε ≡ E (p)/mN =
√

1 + η2,

ηF ≡ pF/mN , εF =
√

1 + η2
F (8)

∆ =
τ

κ2

[
1

3
(ε2

F + εF Γ + Γ2) + λ(εF + Γ) + λ2

]
− (1 + τ),

Γ ≡ max

[
(εF − 2λ), γ– ≡ κ

√
1 +

1

τ
− λ

]
. (9)

Scaling variable ψ is defined by

ψ ≡ 1√
ξF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

. (10)
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We introduce the modified CDFM approach on the basis of the
RFG model for the hadronic tensor and the response functions. In
CDFM:

ηF (x) =
kF (x)

mN
=

α

xmN
, εF (x) =

√
1 + η2

F (x) =

√
1 +

(
α

xmN

)2

(11)

Responses with transverse projections for neutrons:

RT ,n(x , ψ) =
3N

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

× [2W1,n(τ) + W2,n(τ)∆(x , ψ)] , (12)

Responses with transverse projections for protons:

RT ,p(x , ψ) =
3Z

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

× [2W1,p(τ) + W2,p(τ)∆(x , ψ)] , (13)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 67/111



Responses with longitudinal projections for neutrons:

RL,n(x , ψ) =
3N

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

×κ
2

τ
[(1 + τ)W2,n(τ)−W1,n(τ) + W2,n(τ)∆(x , ψ)] , (14)

Responses with longitudinal projections for protons:

RL,p(x , ψ) =
3Z

4mNκη
3
F (x)

(εF (x)− Γ(x))Θ(εF (x)− Γ(x))×

×κ
2

τ
[(1 + τ)W2,p(τ)−W1,p(τ) + W2,p(τ)∆(x , ψ)] , (15)

where

∆(x , ψ) =
τ

κ2

[1

3
(ε2

F (x) + εF (x)Γ(x) + Γ2(x)) +

+λ(εF (x) + Γ(x)) + λ2
]
− (1 + τ) (16)
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with

Γ(x) ≡ max

[
(εF (x)− 2λ), γ– ≡ κ

√
1 +

1

τ
− λ

]
(17)

and

W1,p(τ) = τG 2
M,p(τ) (18)

W1,n(τ) = τG 2
M,n(τ) (19)

W2,p(τ) =
1

1 + τ

[
G 2

E ,p(τ) + τG 2
M,p(τ)

]
(20)

W2,n(τ) =
1

1 + τ

[
G 2

E ,n(τ) + τG 2
M,n(τ)

]
. (21)

Responses with longitudinal projections:

RL(x , ψ) = RL,p(x , ψ) + RL,n(x , ψ)⇒ (22)

RL(ψ) =

∞∫
0

RL(x , ψ)|F (x)|2dx . (23)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 69/111



Responses with transverse projections:

RT (x , ψ) = RT ,p(x , ψ) + RT ,n(x , ψ)⇒ (24)

RT (ψ) =

∞∫
0

RT (x , ψ)|F (x)|2dx (25)

We label
d2σ

dΩdε′
by C CDFM(ψ):

C CDFM(ψ) ≡ d2σ

dΩdε′
=

= σM

{(
Q2

q2

)2

RL(ψ) +

[
1

2

∣∣∣∣Q2

q2

∣∣∣∣+ tan2 θ

2

]
RT (ψ)

}
(26)

Single-nucleon eN elastic cross section:

SQE = σM

{(
Q2

q2

)2

G QE
L (τ) +

[
1

2

∣∣∣∣Q2

q2

∣∣∣∣+ tan2 θ

2

]
G QE

T (τ)

}
, (27)

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 70/111



where single-nucleon functions GL and GT are given by:

G QE
L (τ) =

κ

2τ
[ZG 2

E ,p(τ) + NG 2
E ,n(τ)] +O(η2

F ) (28)

G QE
T (τ) =

τ

κ
[ZG 2

M,p(τ) + NG 2
M,n(τ)] +O(η2

F ). (29)

Superscaling function is evaluated by

fCDFM(ψ) = kF ×
C CDFM(ψ)

SQE
, (30)

and longitudinal L and transverse T scaling functions are
introduced:

fL(ψ) = kF ×
RL(ψ)

G QE
L

, (31)

fT (ψ) = kF ×
RT (ψ)

G QE
T

. (32)
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Figure: The quasielastic scaling function f QE(ψ′) for 12C, 27Al, 56Fe, and
197Au calculated in the CDFMI.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 72/111



Figure: The quasielastic scaling function f QE(ψ′) for 12C, 27Al, 56Fe, and
197Au calculated in the CDFMII.
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Figure: The ratio fL(ψ)/fT (ψ) for 12C calculated in the CDFMII and
RPWIA (Lorentz gauge) for q = 300, 500, 800, and 1000 MeV/c.
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Figure: The differences fT (ψ)− fL(ψ) for 12C calculated in the CDFMII

and RPWIA (Lorentz gauge) for q = 300, 500, 800, and 1000 MeV/c.
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Figure: The longitudinal scaling function fL(ψ) for 12C calculated in the
CDFMII and RPWIA (Lorentz gauge) for q = 300, 500, 800, and
1000 MeV/c.
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Figure: The transverse scaling function fT (ψ) for 12C calculated in the
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Dividing the cross section by the appropriate single-nucleon cross
section, for N −→ ∆ transition, and displaying the results versus a
new scaling variable (ψ′∆) it is obtained that the results scale quite
well.
The shifted dimensionless scaling variable in the ∆-region ψ′∆ is
introduced by the expression:

ψ′∆≡

[
1

ξF

(
κ

√
ρ′∆

2+
1

τ ′
−λ′ρ′∆−1

)]1/2

×
{

+1, λ′ ≥ λ′0∆
−1, λ′ ≤ λ′0∆

, (1)

where

ξF ≡
√

1 + η2
F − 1, ηF ≡

kF

mN
, λ′ = λ− Eshift

2mN
,

τ ′ = κ2 − λ′2, λ =
ω

2mN
, κ =

q

2mN
, τ = κ2 − λ2,

λ′
0
∆ = λ0

∆ −
Eshift

2mN
, λ0

∆ =
1

2

[√
µ2

∆ + 4κ2 − 1

]
, µ∆ =

m∆

mN
,

ρ∆ = 1 +
β∆

τ
, ρ′∆ = 1 +

β∆

τ ′
, β∆ =

1

4

(
µ2

∆ − 1
)
.
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The relativistic Fermi gas superscaling function in the ∆ domain is
given by

f ∆
RFG (ψ′∆) =

3

4
(1− ψ′∆

2
)θ(1− ψ′∆

2
) (2)

Following the CDFM application to the scaling phenomenon, the
∆-scaling function in the model can be expressed:

f ∆(ψ′∆) =

∫ ∞
0

dR|F∆(R)|2f ∆
RFG (ψ′∆(R)), (3)

ψ′∆
2
(R)=

[
κ

√
ρ′∆

2+
1

τ ′
−λ′ρ′∆−1

]
[√

1+
k2

F (R)

m2
N

−1

] ≡ t(R).ψ′∆
2
, (4)

t(R)≡

[√
1 +

k2
F

m2
N

− 1

]
/

[√
1 +

k2
F (R)

m2
N

− 1

]
and kF (R)=

α

R
. (5)
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It was shown that though the functional forms of f ∆(ψ′∆) and the
weight function |F∆(R)|2 are like in the QE region, the parameters
of the densities (e.g. the half-radius R∆ and the diffuseness b∆

when Fermi-type distributions have been used) may be different
from R and b in the QE case.
Fitting the scaling data of the ∆ peak extracted from the
high-quality world data for inclusive electron scattering, we found
for 12C the values R∆ = 1.565 fm and b∆ = 0.420 fm and a
coefficient in the right-hand side of Eq. (2) for the RFG scaling
function f ∆

RFG(ψ′∆) equal to 0.54 instead of 3/4. (The Fermi
momentum was taken to be kF = 1.20 fm−1 and this choice leads
to normalization to unity of f ∆

RFG(ψ′∆).)
The value of R∆ is smaller than that used in the description of the
QE superscaling function for 12C (R = 2.470 fm), whereas the
value of b∆ is the same as b in the QE case.
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Figure: The CDFM scaling function f ∆(ψ′∆) in the ∆-region (solid red line).
Averaged experimental values of f ∆(ψ′∆) are taken from:
J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, A. Molinari, and
I. Sick, Phys. Rev. C 71, 015501 (2005).
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Figure: Inclusive electron cross sections as function of energy loss.
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Figure: Inclusive electron cross sections as function of energy loss.
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– Following:

J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly,
A. Molinari, and I. Sick, Phys. Rev. C 71, 015501 (2005).

the CC neutrino cross section in the target laboratory frame is
given in the form [

d2σ

dΩdk ′

]
χ

≡ σ0F2
χ, (1)

where χ = + for neutrino-induced reactions (for example,
νl + n→ `− + p, where ` = e, µ, τ) and χ = − for
antineutrino-induced reactions (for example, νl + p → `+ + n),

σ0 ≡
(G cos θc)2

2π2

[
k ′ cos θ̃/2

]2
, (2)

where G = 1.16639× 10−5 GeV−2 is the Fermi constant, θc is the
Cabibbo angle (cos θc = 0.9741),

tan2 θ̃/2 ≡ |Q
2|

v0
, (3)
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v0 ≡ (ε+ ε′)2 − q2 = 4εε′ − |Q2|. (4)

The function F2
χ depends on the nuclear structure and is presented

as a generalized Rosenbluth decomposition having charge-charge,
charge-longitudinal, longitudinal-longitudinal and two types of
transverse responses.
The nuclear response functions in both QE- and ∆-regions are
expressed in terms of the nuclear tensor W µν in the corresponding
region, using its relationships with the RFG model scaling
functions. This concerns the leptonic and hadronic tensors and the
response and structure functions.
Instead of the RFG functions in the QE and ∆ regions, we use
those obtained in the CDFM.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 30◦ and εν = 1 GeV. (a) QE contributions: solid line: the result of
CDFM with c1 = 0.63; dashed line: CDFM with c1 = 0.72; dotted line: RFG;
dot-dashed line: SuSA result; double dot-dashed line: the result for the
∆-contribution from the CDFM. (b) the sum of QE- and ∆-contributions in
RFG model (dotted line), in the CDFM with c1 = 0.63 (solid line) and
c1 = 0.72 (dashed line).
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 60◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1.5 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 2 GeV.
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Figure: The cross section of charge-changing antineutrino (νµ,µ+) reaction on
12C at θµ = 45◦ and εν = 1 GeV.
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Figure: The cross section of charge-changing neutrino (νµ,µ−) reaction on 12C
at θµ = 45◦ and εν = 1 GeV.
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Discussions:

The use of asymmetric CDFM scaling function (c1 = 0.63)
gives results which are close to those from SuSA, while the
symmetric scaling function (c1 = 0.72) leads to results similar
with the RFG model ones.
At fixed incident energies the values of the QE- and ∆-peak
maxima decrease with the increase of the muon angle θµ and
the value of the ∆-contribution maximum becomes closer to
that of the QE contribution.
At fixed angle θµ the QE- and ∆-contributions overlap more
strongly with the increase of the neutrino energy and the
maximum of the ∆-peak increases with respect to the QE
peak.
At fixed angle θµ the maximum of the sum of both QE- and
∆-contributions to the cross section decrease with the
increase of the energy. For θµ = 45◦ both CDFM curves (with
c1 = 0.63 and c1 = 0.72) are quite similar for the interval of
neutrino energies εν = 1÷ 2 GeV.

Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei 97/111



At energy εν = 1 GeV and smaller angles (e.g. θµ = 30◦)
there are two maxima of the total sum of the QE- and
∆-contributions, while at larger angles (θµ = 45◦ and 60◦) the
two peaks merge into one (for the energy interval
εν = 1÷ 2 GeV).

The antineutrino cross section (on the example for incident
energy 1 GeV and muon angle of 45 degrees) is about 5 times
smaller than the neutrino one.
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A.N. Antonov, M.V. Ivanov, M.K. Gaidarov, E.Moya de Guerra, J.A.
Caballero, M.B. Barbaro, J.M. Udias, P. Sarriguren, “Superscaling
analysis of inclusive electron scattering and its extension to
charge-changing neutrino-nucleus cross sections beyond the
relativistic Fermi gas approach”, Phys. Rev. C 74, 054603 (2006).

M.V. Ivanov, M.B. Barbaro, J.A. Caballero, A.N. Antonov, E. Moya
de Guerra, M.K. Gaidarov, “Superscaling and charge-changing
neutrino scattering from nuclei in the ∆ region beyond the
relativistic Fermi gas model”, Phys. Rev. C 77, 034612 (2008).
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We consider the semi-leptonic quasi-free scattering from nuclei in
Born approximation, assuming that the inclusive cross sections are
well represented by the sum of the integrated semi-inclusive proton
and neutron emission cross sections.

Figure: The kinematics for
semi-leptonic nucleon knockout
reactions in the
one-boson-exchange approximation.

A lepton with 4-momentum
Kµ = (ε, k) scatters to another
lepton with 4-momentum K ′µ =
(ε′, k′), exchanging a vector bo-
son with 4-momentum Qµ =
Kµ − K ′µ.

ε =
√

m2 + k2, ε′ =
√

m′2 + k ′2 (1)
m ∼= 0, m′ ∼= 0
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In the laboratory system

The initial nucleus has a 4-momentum – Pµ
A = (M0

A, 0)

Final hadronic state corresponds to:

a proton or neutron with 4-momentum Pµ
N=p or n = (EN ,pN)

an unobserved residual nucleus with 4-momentum
Pµ

B = (EB ,pB)

p ≡ −pB – the missing momentum;

E ≡ EB − E 0
B – the excitation energy; E 0

B =
√(

M0
B

)2
+ p2

M0
B – the ground-state mass of the daughter nucleus

Q ′µ ≡ Kµ − Pµ
N = (ω′,q′)– 4-momentum in the u-channel

q′ = |q′| =
√

k2 + p2
N − 2kpN cos θkpN
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Following procedure for calculating the inclusive cross section in
the u-channel from work:

J. E. Amaro, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly,
Phys. Rev. C 73, 035503 (2006) – SuperScaling Analysis (SuSA).

after some approximations cross section can be written in the form:

dσ

dΩNdpN
' σ(u)

sn F (y ′, q′), (2)

F (y ′, q′) ≡
∫
Du

pdp

∫
dE
E

Σ ' F (y ′), (3)

σ
(u)
sn =

1

32πε

1

q′

(
p2

N

EN

)
g 4

2π∫
0

dφ′

2π
lµν(k, k′)wµν(p,pN)DV (Q2)2 (4)

effective neutral current single nucleon cross section
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In Eq. (4) lµν and wµν are the leptonic and s.n. hadronic tensor,
respectively, and DV (Q2) is the vector boson propagator. In
Eq. (2) y ′ is the scaling variable naturally arising in the
u-scattering kinematics, analogous to the usual y -scaling variable
for t-scattering. The scaling function F (y ′) obtained within a
given approach can be used to predict realistic NC cross sections.
The RFG u-channel ψ-variable is introduced in the form:

ψ
(u)
RFG = s

√
mN

TF


√√√√1 +

(
y

(u)
RFG

mN

)2

− 1


1/2

, (5)

where
y

(u)
RFG = s

mN

τ ′

[
λ′
√
τ ′2ρ′2 + τ ′ − κ′τ ′ρ′

]
(6)

is the RFG y -scaling variable for the u-channel and corresponds to
the minimum momentum required for a nucleon to participate in
the NC neutrino-nucleus scattering.
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The dimensionless kinematic quantities in Eq. (6) are given by:
κ′ ≡ q′/2mN , λ′ ≡ ω′/2mN , τ ′ = κ′2 − λ′2 and defined

ρ′ ≡ 1− 1

4τ ′
(1−m′2/m2

N). The sign s is

s ≡ sgn
{

1

τ ′

[
λ′
√
τ ′2ρ′2 + τ ′ − κ′τ ′ρ′

]}
. (7)

The physical meaning of ψ
(u)2
RFG is the minimum kinetic energy of

the nucleon participating in the reaction. The RFG scaling function
is found to be:

FRFG(ψ
(u)
RFG) =

3

4
kF

(
1− ψ(u)2

RFG

)
Θ
(

1− ψ(u)2
RFG

)
. (8)
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Figure: Quasielastic differential cross section for neutral current neutrino
scattering at 1 GeV from 12C for proton knockout at θp = 20◦ (a,b) and 60◦

(c,d).
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Figure: Quasielastic differential cross section for neutral current antineutrino
scattering at 1 GeV from 12C for proton knockout.
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Figure: Quasielastic differential cross section for neutral current neutrino
scattering at 1 GeV from 12C for neutron knockout.
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Figure: Quasielastic differential cross section for neutral current antineutrino
scattering at 1 GeV from 12C for neutron knockout.
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Discussions:

1 We construct two different asymmetric scaling functions within
CDFM: one uses a parabolic form of the function at positive ψ′

values, the second uses an exponential form of that function at
ψ′ > 0. These scaling functions have been used in the calculations
of quasielastic differential cross section for neutral current neutrino
scattering at 1 GeV from 12C for proton and neutron knockout at
θp = 20◦ and 60◦.

2 It can be seen from our results at 60◦ that the neutrino and
antineutrino cross sections are roughly in a 2 : 1 ratio. For larger
scattering angle values, neutrino and antineutrino cross sections
come closer, diminishing the above ratio.

Moreover, the neutron knockout cross sections are somewhat larger
than the proton knockout cross sections due to the behavior of the
NC single-nucleon form factors.

3 It was shown that the use of asymmetric CDFM scaling function
gives results which are close to those from SuSA, while the results
with symmetric scaling function are more similarity with the RFG
model results.
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