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Abstract. The present work describes a method of solution of the n-dimensional
Schrödinger equation with a potential group in higher dimensions. The method
is applied to the algebraic solution of the Coulomb-Rosochatius system in n di-
mensions, whose bound states are connected with the potential group SO(3n+
1) and scattering states with SO (3n, 1) . The S-matrix elements are computed
by the method of intertwining operators and an integral representation is ob-
tained for the scattering amplitude.

1 Introduction

In this work, we exploit the potential algebra of the Coulomb-Rosochatius [1]
system in n dimensions

V (r) = −γ
r

+
n∑

k=1

βk
x2
k

, (1)

in order to give a completely algebraic solution of bound states and scatttering
states.

Before describing the method of solution, a few definitions are in order:
a Lie group G is an invariance group for a quantum-mechanical system with
Hamiltonian H if the latter can be related to a suitable function of a Casimir
operator, C, of G

H = f (C) . (2)

An algebraic derivation of the energy spectrum is possible also when the
quantum-mechanical system admits a potential group. The concept of poten-
tial group, introduced in Ref. [2] and applied there to solvable one-dimensional
potentials, relates the Hamiltonian, H , of a quantum-mechanical system to the
projection of an appropriate function of a Casimir operator, C, of the group, G,
to a subspace, H, occurring in a reduction chain of the group

H = f (C) |H . (3)
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Formula (3) permits an algebraic derivation of the bound states of the system,
which are labelled with the quantum numbers defining the unitary irreducible
representations (unirreps) of the subgroups appearing in the reduction chain of
the invariance group. The name of potential group is due to the fact that the
quantum numbers of the unirreps of the final subgroup of the chain yield the
coupling strengths of the potential in the Schrődinger equation.

As for scattering states, a fully algebraic derivation of the S matrix is possi-
ble when the Hamiltonian of the system satisfies an equation of type (2) or (3)
with a non-compact group. It has been shown in Ref. [3] that the S matrix can
be associated with an intertwining operator, A, between two Weyl-equivalent
representations, Uχ and U eχ, of G, i.e. two representations of G with the same
Casimir eigenvalues.

By definition, A satisfies the following equations

AUχ (g) = U eχ (g)A , ∀ g ε G (4)

and
AdUχ (b) = dU eχ (b) , ∀ b ε g (5)

where dUχ and dU eχ are the corresponding representations of the algebra, g, of
G. Eqs. (4-5) have high restrictive power, determining the intertwining operator
up to a constant. The S matrix coincides with the intertwining operator A

S = A (6)

if eq. (2) holds, and with the reduction of A to a proper Hilbert subspace H
S = A|H (7)

if eq. (3) holds.
The plan of the paper is as follows: Section 2 will describe in full detail the

potential group for the Coulomb-Rosochatius system, specialized to a compact
group in Subsection 2.1, dedicated to bound states, and to a non-compact group
in Subsection 2.2, dedicated to scattering states. Section 3 will be devoted to
conclusions and perspectives.

2 Potential Group for the Coulomb-Rosochatius System

Let us start the discussion with the fact that the generators of the unitary irre-
ducible representations (UIR’s) of SO (3n+ 1) ( or SO (3n, 1)) are Hermitian
operators Mμν = −Mνμ (μ, ν = 1, 2, . . . , 3n+1) which obey the commutation
relations

[Mμν ,Mσλ] = i (gμσMνλ + gνλMμσ − gμλMνσ − gνσMμλ) (8)

where

gμν = (+,+, . . . ,+,+) for SO (3n+ 1) (9)

gμν = (+,+, . . . ,+,−) for SO (3n, 1)

12
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The number of independent Casimir invariants which are identically multi-
ple of the unit in each UIR is

[
3n+1

2

]
, where [q] represents the largest integer

contained in q.
Since the present work is dedicated to the motion of spinless particles, we

can use the most degenerate (symmetric) UIR’s of the groupG of interest, where
the eigenvalues of the Casimir invariants are identically zero, with the exception
of the second order Casimir operator

CG =
1
2

3n+1∑

μ,ν=1

Mν
μM

μ
ν , (10)

where G is SO (3n+ 1) or SO (3n, 1).
It is well-known that the most degenerate representation of algebra so(3n+

1) ( so(3n, 1) ) can be realized in the Hilbert space spanned by negative-energy
(positive-energy) states corresponding to a fixed eigenvalue of the Coulomb
Hamiltonian HCoul in 3n dimensions, written in units � = m = 1,

HCoul =
1
2
p2 − γ√

ζ2
, γ > 0 (11)

where ζ = (ζ1, ζ2, . . . , ζ3n) ∈ R3n, pj = −i ∂
∂ζj

, (j = 1, ..., 3n), ζ2 =
∑3n
i=1 ζiζi, p

2 =
∑3n
i=1 pipi. ).

In order to exploit relation (3) we perform an unitary mapping in the Hilbert
space of the system:

W : ΨCoul → Φ = λ1/2 (ζ) ΨCoul (12)

implying the following similarity transformation of the generators

Mij = λ1/2 (ζ) ◦ (ζipj − ζjpi) ◦ λ−1/2 (ζ) ( i, j = 1, ..., 3n) (13)

Mi,3n+1 = |2h|− 1
2 λ1/2 (ζ) ◦

[
ζip

2 − pi (ζ · p) + i
3n− 1

2
pi − γζi√

ζ2

]

◦ λ−1/2 (ζ) = −M3n+1,i ( i = 1, ..., 3n) (14)

where

λ (ζ) =
(
ζ2
1 + ζ2

2 + ζ2
3

) (
ζ2
4 + ζ2

5 + ζ2
6

) · · · (ζ2
3n−2 + ζ2

3n−1 + ζ2
3n

)
(15)

and

h = λ1/2 (ζ) ◦
(

1
2
p2 − γ√

ζ2

)
◦ λ−1/2 (ζ) . (16)
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It is worth pointing out that the Mij generators (13) come from the com-
ponents of the angular momentum, Lij = ζipj − ζjpi, and the Mi,3n+1 gen-
erators (14) from the components of the modified Runge-Lenz vector, Ai =

1
(2h)1/2

[
1
2 (Lijpj + pjLij) − γ ζi√

ζ2

]
.

The generators (13-14) act in the eigenspace of h equipped with the scalar
product

(φ1, φ2) =
∫

R6

φ∗1 (ζ)φ2 (ζ) dμ (ζ) , ζ ∈ R3n (17)

where dμ (ζ) = λ−1 (ζ) dζ1dζ2 · · · dζ3n.
This representation is, of course, unitarily equivalent to the representation

constructed in the eigenspace of the Coulomb Hamiltonian HCoul in 3n dimen-
sions.

The operators (13-14) provide most degenerate representations of SO(3n+1)
if h is negative definite and of SO (3n, 1) if h is positive definite. More pre-
cisely, they define the most degenerate UIR’s of SO (3n+ 1) specified by the
integer number j = 0, 1, . . . when h is negative definite and the most degenerate
principal series representations of SO (3n, 1) labelled by the complex number

j = −3n− 1
2

+ iρ, ρ > 0 when h is positive definite. The Hamiltonian (16)

can be related to the operator

Q =
γ2

[
C +

(3n− 1
2

)2] =
∂2

∂ζ2
1

+
∂2

∂ζ2
2

+ . . .+
∂2

∂ζ2
n

(18)

− 2
ζ2
1 + ζ2

2 + ζ2
3

(
ζ1

∂

∂ζ1
+ ζ2

∂

∂ζ2
+ ζ3

∂

∂ζ3

)

− 2
ζ2
4 + ζ2

5 + ζ2
6

(
ζ4

∂

∂ζ4
+ ζ5

∂

∂ζ5
+ ζ6

∂

∂ζ6

)
−

· · · + 2γ√
ζ2

Here
ζ = (x1e1, x2e2, . . . , xnen) (19)

with ei = (sinαi sinβi, sinαi cosβi, cosαi) , i = 1, 2, . . . , n, while

x1 = r sin θn−1 sin θn−2 . . . sin θ2 sin θ1
x2 = r sin θn−1 sin θn−2 . . . sin θ2 cos θ1
· · ·
xn−1 = r sin θn−1 cos θn−2

xn = r cos θn−1

(20)

Here, the ranges of the polyspherical coordinates ( see Ch. 10 of Ref. [4]) are

r ≥ 0, 0 ≤ θi ≤ π

2
, 0 ≤ αk ≤ π, 0 ≤ βk < 2π, for i = 1, 2, . . . n−1 and k =
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Non-central Potentials in the n-Dimensional Schrödinger Equation

1, 2, . . . n. Due this parametrization, the operator Q = γ2
/[
C +

(3n− 1
2

)2]

becomes

Q =
1

rn−1

∂

∂r
rn−1 ∂

∂r
+

1
r2

(
1

sinn−2 θn−1

∂

∂θn−1
sinn−2 θn−1

∂

∂θn−1
+ . . .

+
1

sin2 θn−1 sin2 θn−2 . . . sin2 θ2

∂2

∂θ21

)
−

n∑

i=1

1
x2
i

CSO(3)i +
2γ
r

(21)

where

CSO(3)i = −
(

1
sinαi

∂

∂αi
sinαi

∂

∂αi
+

1
sin2 αi

∂2

∂β2
i

)

According to this the basis functions |j; lM〉 can be defined as the common
set of eigenfunctions of the Casimir operators of the groups forming the chain

G
j
⊃ SO (3n)

m0

⊃ SO (3n− 3)
m1

×SO (3)
κ1

⊃ SO (3n− 6)
m2

×SO (3)
κ2

×SO (3) ⊃

. . . ⊃ SO (3)
κn

× SO (3)
κn−1

× . . .× SO (3) (22)

CG |j; lM〉 = j (j + 3n− 1) |j; lM〉
CSO(3n−3ν) |j; lM〉 = mν (mν + 3n− 3ν − 2) |j; lM〉 , ν = 0, 1, . . . , n− 2

CSO(3)i |j; lM〉 = κi (κi + 1) |j; lM〉 , i = 1, 2, . . . , n

where m0 ≡ l, M is the collective index (m1,··· ,mn−2, κ1, κ2, . . . , κn) and

CSO(k) =
1
2

k∑

i,j=1

M2
ij

Let HK ,K = (κ1, κ2, . . . , κn), be a subspace spanned by |j; lM〉 with fixed
κ1, κ2, . . . , κn. Then, the operator (19) restricted to this subspace becomes

γ2

[
C +

(3n− 1
2

)2]

∣∣∣∣∣
HK

= ∇2 −
n∑

i=1

κi(κi + 1)
x2
i

+
2γ
r

(23)

Hence, the Hamiltonian

H = −1
2
∇2 − γ

r
+

n∑

i=1

κi (κi + 1)
2x2

i

can be described in terms of the potential groups SO (3n+ 1) and SO (3n, 1)
since

H = − γ2

2
[
C +

(3n− 1
2

)2]

∣∣∣∣∣
HK

,
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2.1 Bound States

The bound-state spectrum is immediately obtained from the eigenvalue of the
Casimir operator C of the potential group SO (3n+ 1), i.e. j (j + 3n− 1), in
the form

E = − γ2

2
(
j + 3n−1

2

)2 , (24)

where j takes on integer values from κ1 + κ2 + . . .+ κn upwards.
We give for reference the expression of the bound-state wave functions

ψ (x) = Rjl (r)YlM (x̂) , (25)

where Rjl (r) is the radial part of the wave function, while YlM (x̂) is the angu-
lar part of it :

Rjl (r) = cul+ne−
u
2 L2l+3n−2

j−l (u) , u = 4γr/ (2j + 3n− 1) (26)

with

c = (2γ)−n/2
[
j +

1
2

(3n− 1)
]− 1

2 (n+1) [ Γ (j − l + 1)
2Γ (j + l + 3n− 1)

] 1
2

(27)

and

YlM (x̂) = χ
n−2∏

i=1

sinmi+n−i θn−i cosκi+1 θn−iP
(mi+

3n−3i
2 −1, κi+

1
2 )

(mi−1−mi−κi)/2
(cos 2θn−i)

× sinκn+1 θ1 cosκn−1+1 θ1P
(κn+ 1

2 , κn−1+
1
2 )

(mn−2−κn−κn−1)/2
(cos 2θ1) (28)

The normalization constant, χ, is

n−2Y

i=1

"
Γ

`
1
2

(mi−1+mi+κi+3n−3i+1)
´
Γ

`
1
2

(mi−1−mi−κi+2)
´
(2mi+3n−3i+1)

Γ
`

1
2

(mi−1+mi−κi)
´
Γ

`
1
2

(mi−1−mi+κi+3)
´

# 1
2

×
"

Γ
`

1
2

(mn−2+κn+κn−1+4)
´
Γ

`
1
2

(mn−2−κn−κn−1+2)
´
(2mn−2+4)

Γ
`

1
2

(mn−2+κn−κn−1+3)
´
Γ

`
1
2

(mn−2−κn+κn−1+3)
´

# 1
2

(29)

Here, Lαn and P (α,β)
n are Laguerre and Jacobi polynomials, respectively. It

is worth noting that the YlM (x̂) functions are related to (3n − 1)-dimensional

spherical harmonics YlM
(
ζ̂
)

(see Section 10.5 of [4]) in polyspherical coordi-
nates as

YlM

(
ζ̂
)

= YlM (x̂)
n−1∏

k=1

(
sinn−k θn−k cos θn−k

)−1
n∏

i=1

Y νi
κi

(αi, βi) . (30)
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where Y νκ are 2-dimensional spherical harmonics of degree κ, while Rjl is re-
lated to the radial part RCoul

jl (r) of the 3n-dimensional Coulomb wave func-
tion [5]

Rjl (r) = rnRCoul
jl (r)

Finally, we note that the operators

Iν = −1
2

n−ν∑

ı,j=1

(
xi

∂

∂xj
− xj

∂

∂xi

)2

+
n−ν∑

l=1

x2
l ×

n−ν∑

i=1

κi (κi + 1)
x2
i

,

(ν = 0, 1, . . . , n− 2)

are responsible for the separability ofH in spherical coordinates. These integrals
of motion are related to the Casimir operators of SO(3n− 3ν) in the sense that

Iν = CSO(3n−3ν)
∣∣∣
HK

, (ν = 0, 1, . . . , n− 2)

2.2 Scattering States

Once the group structure of the problem has been recognized, the associated S
matrix can be computed by using matrices that intertwine Weyl-equivalent rep-
resentations of SO (3n, 1) in the bases corresponding to the reduction (22). We
find it expedient to use, for this purpose, equation (4). By realizing the principal
series of SO (3n, 1) on suitable Hilbert spaces of appropriate functions, one can
derive from (4) the functional relations satisfied by the kernel of the intertwining
operator, written in integral form and, consequently, the explicit representation
of the matrix elements of the operator itself.

It is known that the most degenerate principal series representations of

SO(N, 1) labelled with the quantum number j = −N − 1
2

+ iρ, with ρ > 0,

can be realized on L2

(
SN−1

)
(see Section 9.2.1 of [4])

Uj (g) f (η) = (ωg)
j
f (ηg) , η ∈ SN−1 (31)

where

ωg =
N∑

i=1

g−1
Niηi + gNN , (ηg)k =

∑N
i=1 g

−1
ki ηi + gkN∑N

i=1 g
−1
Niηi + gNN

The representations specified by labels j and 1 −N − j are Weyl-equivalent.
The operator A defined by

(Af) (η) =
∫
K (η, η′) f (η′) dη′ (32)

intertwines representations j and 1 −N − j on condition that

K
(
ηg, η

′
g

)
= (ωg)

N−1+j (
ω′
g

)N−1+j
K(η, η′) . (33)
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The kernel, K , is uniquely determined by Eq. (33) up to a constant and is
given by

K(η, η′) = κ (1 − η · η′)1−N−j
. (34)

with

κ = 2−
N−1

2 +iρΓ
(
N−1

2 + iρ
)

π
N−1

2 Γ (−iρ)
(35)

Taking into account the fact that the (N − 1)-dimensional spherical harmonics
YlM of degree l [4] forms a basis in L2

(
SN−1

)
, corresponding to the above re-

duction, we obtain the following integral representation for the matrix elements
of A

〈j; l′M ′|A |j; lM〉 =
∫
K(η, η′)Y ∗

l′M ′ (η′)YlM (η) dηdη′ . (36)

Therefore

〈j; l′M ′|A |j; lM〉 = Alδll′δMM ′ , (37)

where

Al =
Γ
(
N−1

2 + iρ+ l
)

Γ
(
N−1

2 − iρ+ l
) . (38)

According to this, we have

S (p; p′) =
∑

lM

AlYlM (p̂)Y∗
lM (p̂′) . (39)

Thus, the scattering amplitude, f (p; p′), is defined by

f (p; p′) = (−i)
(

2π
p

)n−1
2 ∑

lM

(Al − 1)YlM (p̂)Y∗
lM (p̂′) . (40)

We can omit unity in the brackets of formula (40) when p̂′ �= p̂ , leaving

f (p; p′) = (−i)
(

2π
p

)n−1
2 ∑

lM

Γ
(

3n−1
2 + iρ+ l

)

Γ
(

3n−1
2 − iρ+ l

)YlM (p̂)Y∗
lM (p̂′) . (41)

Moreover, formulas (30) and the following expansion of the kernel

(1 − η · η′)− 3n−1
2 −iρ = (2π)

3n−1
2

2−iρΓ (−iρ)
Γ
(

3n−1
2 + iρ

)

×
∑

lM

Γ
(

3n−1
2 + iρ+ l

)

Γ
(

3n−1
2 − iρ+ l

)Y ∗
l′M ′ (η′)YlM (η) ,
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yield an integral representation of the scattering amplitude

f (p; p′) =
1

ip
n−1

2

2iρΓ
(

3n−1
2 + iρ

)

Γ (−iρ) Λ (θn−1, . . . , θ1) Λ
(
θ′n−1, . . . , θ

′
1

)

×
∫ π

0

· · ·
∫ π

0

⎛

⎝1 −
n∑

j=1

p̂j p̂
′
j cosαj

⎞

⎠
− 3n−1

2 −iρ

×
n∏

l=1

Pκl
(cosαl) sinαldαl

(42)

where

Λ (θn−1, . . . , θ1) =
n−1∏

i=1

sinn−i θn−i cos θn−i

When κi = 0, formula (42) simplifies to

f (p; p′) =
1

ip
n−1

2

2iρΓ
(
n−1

2 + iρ
)

Γ (−iρ)
∑

εi=±
σ

⎛

⎝1 −
n∑

j=1

εj p̂j p̂
′
j

⎞

⎠
−n−1

2 −iρ

(43)

with

σ =
n∏

i=1

εi

It is worth noting that that the amplitude (43) does not reduce to the Coulomb
amplitude in n dimensions [6]

fCoul(p; p′)=
1

ip
n−1

2

2iρΓ
(
n−1

2 + iρ
)

Γ(−iρ) (1− p̂1p̂
′
1 − p̂2p̂

′
2 − · · ·− p̂np̂

′
n)

−n−1
2 −iρ

(44)
when κi is set equal to zero. The reason for this discrepancy lies in the fact that
the Schrödinger equation with potential (1) is supplemented with the following
boundary condition on the wave function at xi = 0, (i = 0, 1, . . . , n), where
the Coulomb-Rosochatius potential is singular

Ψ (x) = 0 if xi = 0 (i = 0, 1, . . . , n)

3 Conclusions and Outlook

The present work is the latest in a series of papers where the potential group
approach and the method of intertwining operators (formulae (2-7)) have been
applied to non-central extensions of the Coulomb potential: Ref. [7] studied the
bound states of the three-dimensional Coulomb potential plus a barrier term with
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the SO (5) potential group and Ref. [8] the scattering states of similar potentials
with SO (5, 1) potential group. A first simultaneous analysis of bound and scat-
tering states of a three-dimensional Coulomb-Rosochatius potential of type (1)
was performed in Ref. [9], where the use of potential groups SO (7) for bound
states and SO (6, 1) for scattering states permitted the algebraic solution of a
sub-family of potentials (1) not including the pure Coulomb potential, since the
potential strengths βi (i = 1, 2, 3) allowed by the final subgroup in the reduction
chain, SO (2)×SO (2)×SO (2), cannot be set to zero. In the present work, the
choice of potential groups SO (3n+ 1) and SO (3n, 1) in the n-dimensional
case yields reduction chains with final subgroups that are the direct product of n
copies of SO (3), so that the allowed potential strengths now are non-negative
integers, thus including the pure n-dimensional Coulomb potential as a particu-
lar case (βi = 0, i = 1, ..., n). The scattering amplitude computed for βi = 0,
however, does not coincide with the Coulomb scattering amplitude in n dimen-
sions, owing to the different boundary conditions imposed to the wave function
in the Schrődinger equation.

The potential group approach is quite general and, obviously, not limited
to the orthogonal and pseudo-orthogonal symmetries underlying the Coulomb-
Rosochatius Hamiltonian. Systems with different symmetries will be studied in
future works.
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