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Abstract. Thermal effects on an inelastic neutrino-nucleus scattering off even-
even nuclei in the iron region are studied. It is assumed that allowed GT0 tran-
sitions in the neutral channel dominate the inelastic cross section σνA. To ob-
tain the GT0 strength distribution at finite temperature, the thermal quasiparticle
random phase approximation in the context of thermo field dynamics is em-
ployed. It is found that a temperature growth increases the fraction of low- and
negative-energy transitions in the GT0 strength distribution. The neutral-current
neutrino-nucleus inelastic cross section is calculated for relevant temperatures
during the supernova core collapse. In agreement with the earlier studies within
the shell-model approach a temperature increase leads to a considerable increase
in σνA for Eν lower than the energy of GT0 resonance.

1 Introduction

Neutrinos play an exceptional role in the evolution of the core collapse of a
massive star towards a supernova explosion. Suffice it to mention that according
to the standard models of supernovae ∼99% of the collapse energy is radiated
in neutrinos. Until the iron core of the collapsing star reaches densities ρ ≈
4 × 1011 g·cm−3, almost all of the energy of the collapse is transported by the
neutrinos. At higher densities of the core elastic neutrino-nucleus and inelastic
neutrino-electron scattering come into play as the sources for neutrino trapping
and neutrino thermalization.

At the end of 1980th it was pointed out by W. C. Haxton that inelastic
neutrino-nucleus scattering (INNS) mediated by the neutral-current can be as
important as other processes of neutrino down-scattering [1]. For example, the
INNS might contribute to the neutrino opacities and thermalization during the
collapse phase, to the revival of the stalled shock wave in the delayed explosion
mechanism, and to explosive nucleosynthesis.

The estimates by W. C. Haxton were based on nuclei in their ground states,
i.e. on ”cold” nuclei. Later, it was realized that the INNS occurs in hot stellar
environment (T ≥ 0.8 MeV) and due to thermal population of nuclear excited
states sizeable changes of the INNS cross section are to be expected. The effect
was firstly analyzed in [2] and then in [3] on the basis of large-scale shell-model
(LSSM) calculations. In Refs. [3,4], it was revealed that the INNS cross section
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σνA(Eν) noticeably increases at T �= 0 and neutrino energies Eν � 10 MeV
especially for neutrino scattering off even-even nuclides.

However, in the subsequent core-collapse supernova simulations [5] with
inclusion of several dozens of nuclides it was demonstrated that on the whole the
inclusion of the INNS process has no significant effect on the collapse dynamics
and the shock propagation. However, it has a significant effect on the spectrum
of neutrinos generated in the νe burst.

Here, we present the other approach in treating the thermal effects on the
cross section of INNS. Essentially, our approach is based on the thermal quasi-
particle random phase approximation. However, we apply it in the context of the
thermo field dynamics which enables a transparent treatment of excitation and
de-excitation processes in a hot many-body system like a nucleus.

2 Cross Section of Inelastic Neutrino-Nucleus Scattering

We consider a process

(A,Z) + νe → (A,Z)∗ + ν′e

Up to moderate neutrino energies Eν , this neutral-current process is dominated
by GT transitions mediated by the operator

D =
(g

A

g
V

)
(�στ0), (1)

where g
A

and g
V

are the axial and vector weak coupling constants, �σ is the spin
operator and τ0 is the zero-component of the isospin operator.

At T �= 0 the INNS cross section σνA(Eν) is given by

σνA(Eν) =
G2
F

4π

∑

i f

[Eν + (Ei − Ef )]2Bif (GT0) gi(T ), (2)

where indices i, f run over initial and final states of the nucleus; Bif (GT0) =
|〈i||D||f〉|2, and GF is the Fermi constant; gi(T ) is the Boltzmann thermal
occupation factor of the i-th nuclear initial state.

Within the LSSM approach an explicit calculation of σνA(Eν) appeared to
be impracticable. To overcome this difficulty, the approximate procedure was
adopted in [3]. The total cross section was split into two parts — the down-
scattering part σdνA(Eν) and the up-scattering part σupνA(Eν). The term σdνA(Eν)
includes transitions when the scattered neutrino loses its energy (Ef > Ei)
whereas the term σupνA(Eν) includes the transitions when a scattered neutrino
gets an energy from a hot nucleus (Ef < Ei). Assuming the validity of the
Brink hypothesis for the GT0 resonance the down-scattering term was trans-
formed to the weighted sum over only those final nuclear states which are cou-
pled by the direct GT0 transition with the nuclear ground state. As a result,
σdνA(Eν) appeared to be independent of T .
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Thus, within the LSSM approach the equation for σνA(Eν) has the form

σνA(Eν) = σdνA(Eν) + σupνA(Eν) =
G2
F

4π

⎡

⎣
∑

f

(Eν − Ef )
2
B0f (GT0) +

∑

Ei>Ef

[Eν + (Ei − Ef )]
2
Bif (GT0) gi(T )

⎤

⎦ . (3)

3 The Formalism

The thermo field dynamics (TFD) [6–8] is the real time formalism to treat ther-
mal effects in quantum field and many-body theories.

Within the TFD the grand canonical average of a given operator A is calcu-
lated as the expectation value in a specially constructed, temperature-dependent
state |0(T )〉 which is termed the thermal vacuum. In this sense, the thermal
vacuum describes the thermal equilibrium of the system.

Such a “vacuum state” cannot be constructed as long as one stays in the
Hilbert space of the original many-body system. This aim can be achieved by
a formal doubling of the system degrees of freedom. That is, for the system
governed by the Hamiltonian H the fictitious “tilde”-system identical with the
original one is introduced. The quantities associated with the fictitious system
are marked by the tilde.

The essential ingredients of the TFD are the thermal Hamiltonian H = H −
H̃ and the thermal vacuum state |0(T )〉. An excitation spectrum of a hot nucleus
is obtained by diagonalization of H. At the same time, its thermal behavior is
controlled by the thermal vacuum state which is the eigenstate of H with the zero
eigenvalue. The thermal vacuum has to satisfy the thermal state condition [6–8]

A|0(T )〉 = σ eH/2T Ã†|0(T )〉, (4)

where σ = 1 for bosonic A and σ = −i for fermionic A.
Applying the TFD formalism to a hot nucleus we follow Refs. [9, 10].

3.1 The Model Thermal Hamiltonian

We employ the model Hamiltonian of the Quasiparticle-Phonon Model (QPM)
HQPM [11] which consists of proton and neutron mean fields Hsp, the BCS
pairing interactions Hpair and isoscalar and isovector separable particle-hole
interactions. Since the process under study involves nuclear excitations of ab-
normal parity, the separable spin-multipole interactions Hph

SM are used in the
particle-hole channel.

HQPM = Hsp +Hpair +Hph
SM . (5)
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The three terms of HQPM read

Hsp =
∑

τ=p,n

∑

jm

τ
(Ej − λτ )a

†
jmajm ,

Hpair = −1
4

∑

τ=p,n

Gτ
∑

jm
j′m′

τ
a†jma

†
jmaj′m′aj′m′ ,

Hph
SM = −1

2

∑

Lλ

(κ(Lλ)
0 + κ

(Lλ)
1 �τ1�τ2)

∑

μ

S†
LλμSLλμ,

where

S†
Lλμ =

∑

τ=p,n

∑

jm
j′m′

τ 〈jm|iLRL(r)[YL�σ]λμ|j′m′〉a†jmaj′m′ .

The quantum numbers j,m actually represent the complete set of single-particle
quantum numbers n, l, j,m, τ (τ = n, p is the isotopic index) and ajm =
(−1)j−maj−m. The notation

∑τ implies a summation over neutron (τ = n) or
proton (τ = p) single-particle states only.

To determine a thermal behavior of a nucleus governed by the Hamiltonian
(5), we should diagonalize the thermal Hamiltonian HQPM = HQPM−H̃QPM

and find the corresponding thermal vacuum state. This will be made in two steps.

3.2 Thermal Quasiparticles

At the first step, the sum of single-particle and pairing terms

HBCS = Hsp +Hpair − H̃sp − H̃pair

is diagonalized. To this aim, the two subsequent unitary transformations of the
original a†jm, ajm and tilde ã†jm, ãjm single-particle operators are made. The
first one is the usual Bogoliubov transformation to the Bogoliubov quasiparticles
α†
jm, αjm and their tilde counterparts α̃†

jm, α̃jm

α†
jm = uja

†
jm−vjajm (6)

α̃†
jm = uj ã

†
jm−vj ãjm.

The second transformation mixes the original and tilde degrees of freedom

β†
jm = xjα

†
jm−iyjα̃jm (7)

β̃†
jm = xjα̃

†
jm+iyjαjm.

The coefficients xj , yj are temperature dependent. The transformation (7) is
termed the thermal Bogoliubov transformation and the operators β†

jm, βjm are
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named the thermal quasiparticle operators. Since both the transformations are
the unitary ones, the following constraints should be fulfilled: u2

j+v
2
j = 1 and

x2
j+y

2
j = 1.

Applying the principle of compensation of dangerous diagrams (see, e.g.,
[11]) one gets the coefficients uj , vj

(
uj
vj

)
=

1√
2

(
1± Ej−λτ√

(Ej−λτ )2+Δ2
τ

)1/2

(8)

In Eq. (8), the energy gap Δτ and the chemical potential λτ are the functions of
the coefficients xj , yj and obey the following equations:

Δτ =
Gτ
2

∑

j

τ
(2j + 1)(x2

j − y2
j )ujvj (9)

Nτ =
∑

j

τ
(2j + 1)(v2

jx
2
j + u2

jy
2
j ). (10)

At this stage the thermal BCS Hamiltonian HBCS appears to be diagonal

HBCS = Hsp + Hpair �
∑

τ

∑

jm

τ
εj(T )(β†

jmβjm − β̃†
jmβ̃jm),

where εj(T ) is the quasiparticle energy, εj(T ) =
√

(Ej−λτ )2+Δ2
τ . However,

the coefficients xj , yj are still unknown.
To find xj , yj and to determine the thermal vacuum |0(T ); qp〉 in the thermal

BCS approximation the thermal state condition (4) is used in the form

ajm|0(T ); qp〉 = i exp
(HBCS

2T

)
ã†jm|0(T ); qp〉.

As a result one gets

yj =
[
1 + exp

(εj
T

)]−1/2

, xj =
(
1 − y2

j

)1/2
. (11)

Moreover, βjm|0(T ); qp〉 = β̃jm|0(T ); qp〉 = 0.
Thus, the coefficients xj , yj are connected with the thermal occupation num-

bers of the Bogoliubov quasiparticles. Equations (8-11) are the equations of the
thermal BCS approximation.

3.3 Thermal Phonons

Now the thermal Hamiltonian reads

HQPM =
∑

τ

∑

jm

τ
εj(β

†
jmβjm − β̃†

jmβ̃jm)− (12)

−1
2

∑

Lλμ

∑

τ,ρ=±1

(κ(Lλ)
0 + ρκ

(Lλ)
1 )

{
S†
Lλμ(τ)SLλμ(ρτ) − S̃†

Lλμ(τ)S̃Lλμ(ρτ)
}
.
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At the second step, we diagonalize a part of the Hamiltonian (12) in a basis
of thermal phonon operators

Q†
λμi=

1
2

∑

τ

∑

j1j2

τ(
ψλij1j2 [β

†
j1
β†
j2

]λμ + ψ̃λij1j2 [β̃
†
j1
β̃†
j2

]λμ + 2i ηλij1j2 [β
†
j1
β̃†
j2

]λμ
)

+
(
φλij1j2 [βj1βj2 ]

λ
μ + φ̃λij1j2 [β̃j1 β̃j2 ]

λ
μ + 2i ξλij1j2 [βj1 β̃j2 ]

λ
μ

)
.

Moreover, we define new thermal vacuum |0(T ); ph〉 as the vacuum for thermal
phonons: Qλμi|0(T ); ph〉 = 0, Q̃λμi|0(T ); ph〉 = 0.

Thermal phonon operators are treated as bosonic ones, i.e.

[Qλ′μ′k′ , Q
†
λμk] = δλ′λδμ′μδk′k, [Q̃λ′μ′k′ , Q

†
λμk] = 0, etc.

This imposes the following constraint on the amplitudes ψ, ψ̃, η, etc.:

1
2

∑

τ

∑

j1j2

τ
(ψλk

′
j1j2ψ

λk
j1j2 + ψ̃λk

′
j1j2 ψ̃

λk
j1j2 + 2ηλk

′
j1j2η

λk
j1j2 (13)

− φλk
′

j1k2φ
λk
j1j2 − φ̃λk

′
j1k2 φ̃

λk
j1j2 − 2ξλ

′k′
j1j2 ξ

λk
j1j2) = δk′k.

The energies of thermal phonons can be found, e.g., applying the variational
principle under the constraint (13). The corresponding secular equation for ther-
mal phonon energies reads

2λ+ 1

κ
(L,λ)
1

=
∑

τ

∑

j1 j2

τ
(f (L,λ)
j1j2

)2
[

(u(−)
j1j2

)2ε(+)
j1j2

(1− y2
j1
− y2

j2
)

(ε(+)
j1j2

)2 − ω2

− (v(+)
j1j2

)2ε(−)
j1j2

(y2
j1
− y2

j2
)

(ε(−)
j1j2

)2 − ω2

]
, (14)

where ε(±)
j1j2

= εj1 ± εj2 , u(−)
j1j2

= uj1vj2 − vj1uj2 , v(+)
j1j2

= uj1uj2 + vj1vj2 ,

and f (L,λ)
j1j2

is the reduced single-particle matrix element of the spin-multipole
operator SLλμ. Equation (14) is the equation of the thermal quasiparticle random
phase approximation1.

Then the Hamiltonian (12) approximately takes a diagonal form

HTQRPA =
∑

λμk

ωλk(T )
(
Q†
λμkQλμk − Q̃†

λμkQ̃λμk

)
. (15)

However, since HTQRPA (15) is invariant with respect to the unitary transfor-
mation

Q†
λμi→XλiQ

†
λμi − YλiQ̃λμi, Q̃†

λμi→XλiQ̃
†
λμi − YλiQλμi,

1Strictly speaking, Eq. (14) is valid when all the particle-hole coupling constants except one

κ
(L,λ)
1 vanish in the term Hph

SM of (5) and (12).
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where X2
λi−Y 2

λi = 1, the phonon amplitudes ψ, ψ̃, η, etc. as well as the phonon
vacuum |0(T ); ph〉 are not determined unambiguously yet (see Refs. [9, 10] for
more details).

The “true” thermal vacuum of the TQRPA is found by meeting the thermal
state condition in the form

SLλμ|0(T ); ph〉 = exp
(HQRPA

2T

)
S̃†
Lλμ|0(T ); ph〉.

Then one gets for Xλi, Yλi

Yλi =
[
exp

(ωλi
T

)
− 1

]−1/2

; Xλi = [1 + Y 2
1i]

1/2 (16)

and phonon amplitudes ψ, ψ̃, η, etc. appear to be dependent on both the types
of the thermal occupation numbers — the quasiparticle ones xi, yi (11) and the
phonon ones Xλi, Yλi (16). The expressions for the phonon amplitudes can be
found in [9].

3.4 Transition Probabilities and the INNS Cross Section

Considering neutrino-nucleus inelastic scattering in stellar environments we as-
sume that the nucleus is in a thermal equilibrium state treated as the thermal
(phonon) vacuum. The scattering leads to transition from the thermal vacuum
to thermal one-phonon states. In the case of a neutrino down-scattering, a one-
phonon state Q†

λi|0(T ); ph〉 is excited. For a neutrino up-scattering the nucleus
is de-excited. This process is treated as the transition to a tilde one-phonon state
Q̃†
λi|0(T ); ph〉 lying lower than the thermal vacuum.

The corresponding transition matrix elements are

Excitation : Φ(ωλi) =
∣∣〈Qλi‖Dλi‖0(T ); ph〉∣∣2

De-excitation : Φ̃(−ωλi) =
∣∣〈Q̃λi‖Dλi‖0(T ); ph〉∣∣2

where Dλi is given in Eq. (1).
Thus, within the present approach the INNS cross section reads

σνA(Eν) = σdνA(Eν) + σupνA(Eν) =

G2
F

4π

∑

i

(Eν − ωλi)2Φλi +
G2
F

4π

∑

i

(Eν + ωλi)2Φ̃λi =

G2
F

4π

∑

i

Φλi
{

(Eν − ωλi)2 + exp
(
−ωλi
T

)
(Eν + ωλi)2

}
. (17)

Transforming the second line in the above equation to the third one we take into
account that Φ̃λi = exp(−ωλi/T )Φλi (see Ref. [9]).

In contrast with Eq. (3) the down-scattering term σdνA(Eν) in our approach
depends on temperature T .
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4 Calculations for the Hot Nucleus 54Fe

Numerical calculations are performed for the 54Fe nucleus.
Single-particle wave functions and energies were calculated in the spheri-

cally symmetric Woods-Saxon potential. The constants of pairing interaction
were determined to reproduce experimental pairing energies in the BCS ap-
proximation. All these parameters are the same as in our previous calcula-
tions [12–14] of electron capture rates on the same nuclide in stellar environ-
ment.

The GT0 resonance in a nucleus is generated by the spin-dependent part of
the effective nuclear interaction. In interactions of nuclei with electromagnetic
probes the GT0 resonance reveals itself as the M1-resonance. In the framework
of the QRPA the structure and the energy of the M1-resonance are determined
by the spin-monopole (or spin-spin) and spin-quadrupole isoscalar and isovector
terms of the Hamiltonian (5). To determine the corresponding four coupling
constants κ(01)

0,1 and κ(21)
0,1 , we take advantage of the old QPM results for magnetic

resonances [11, 15, 16].
Spin-quadrupole forces do not affect noticeably one-phonon 1+ states with

energies ω1i ≤ 15 MeV and, therefore, the corresponding terms in (5) can be
omitted, i.e. κ(21)

0,1 = 0. The radial formfactor R0(r) of the spin-spin forces
is taken to be equal to 1 (no radial dependence). According to estimations in
Refs. [16, 17], the isoscalar spin-spin interaction is very weak in comparison
with the isovector one. Therefore, we actually need to determine only one cou-
pling constant — κ

(01)
1 . This is done by fitting the theoretical position of M1

resonance to its experimental value [18]. It is worth mentioning that the obtained
value of κ(01)

1 is in appropriate agreement with that obtained from the position
of charge-exchange GT± resonances built on 54Fe [13, 14].

The effective axial coupling constant was taken the same as in the shell-
model calculations [3] (g

A
/g

V
)eff = 0.74 (g

A
/g

V
)bare.

Figure 1. GT0 strength distributions in the 54Fe nucleus at different temperatures. Tran-
sition energy is shown along the abscissa axis.
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Figure 1 shows distributions of GT0 transition strengths for the ground state
of 54Fe and for three values of T occurring at different collapse stages: T =
0.86 MeV corresponds to the condition in the core of a presupernova model
for a 15M� star; T = 1.29 MeV and T = 1.72 MeV relate approximately to
neutrino trapping and neutrino thermalization stages, respectively.

At T = 0, the transition strength is concentrated mostly in two one-phonon
1+ states forming the GT0 resonance near Ex ≈ 10 MeV. The main contri-
bution to phonon structures comes from the proton and neutron single-particle
transitions 1f7/2 → 1f5/2, and the proton transition 2p3/2 → 2p1/2 which is
due to pairing correlations in the proton subsystem. With temperature increase
the fraction of low-energy transitions in the GT0 strength distribution increases.
The reasons are weakening and the subsequent collapse of pairing correlations
(at T ≈ 0.8 MeV) and appearance of low-energy particle-particle and hole-hole
transitions due to thermal smearing of neutron and proton Fermi surfaces. More-
over, at finite temperature the “negative energy” transitions appear. As a result
the resonance energy centroid is shifted down by 1.1 MeV at T = 1.72 MeV.
This indicates a violation of the Brink hypothesis in the present approach.

The strength distributions displayed in Figure 1 are used to calculate the
cross section of INNS off 54Fe. The results are shown in Figure 2. As in the
LSSM calculations [3], at T = 0 the cross section σνA(Eν) is equal to zero when
the neutrino energy is less than the energy of the lowest 1+ state in 54Fe. Within
the QRPA, the lowest 1+ state in 54Fe has the excitation energy Ex(1+) ∼
7 MeV (see Figure 1).

Figure 2. Cross section of inelastic neutrino scattering off 54Fe as a function of neutrino
energy Eν at T = 0 (solid line), T = 0.86 MeV (dashed line), T = 1.29 MeV (dot-
ted line), and T = 1.72 MeV (dashed–dotted line). The cross section σνe of neutrino
scattering off an electron is shown by the dashed-double-dotted line.
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At T �= 0 the INNS cross section does not vanish at any neutrino energy
and increases quite rapidly with temperature for neutrinos with energies Eν <
10 MeV. The values of σνA(Eν) presented in Figure 2 agree well with the results
of the LSSM calculations [3].

When the neutrino energy exceeds the energy of the GT0 resonance (Eν ≥
10 MeV) the dependence of the cross section σνA(Eν) onEν becomes smoother.
At these neutrino energies temperature does not affect σνA(Eν) any more. Due
to thermal effects σνA(Eν) becomes larger than the cross section of inelastic
neutrino-electron scattering at T ∼ 1.6−1.7 MeV even at low neutrino energies
Eν � 10 MeV. These features were noted in [3] as well.

5 Conclusions

We have investigated the temperature dependence of the cross section of inelas-
tic neutrino-nucleus scattering off the hot nucleus 54Fe. Thermal effects were
treated within the thermal quasiparticle random phase approximation in the con-
text of the formalism of the thermo field dynamics. These studies are relevant
for supernova simulations.

The present studies are based on the formalism which seems to be quite dif-
ferent from that of the large-scale shell-model approach [3,4]. Indeed, within the
LSSM approach a hot nucleus is considered in the canonical ensemble whereas
the TFD formalism treats a hot nucleus in the grand canonical ensemble. In con-
trast to the LSSM approach [3, 4] we do not assume the Brink hypothesis when
treating the down-scattering component of the cross section σνA(Eν) and the
corresponding term σdνA(Eν) appears to be dependent on T in our calculations.

Despite of the above-mentioned differences, our calculations have revealed
the same thermal effects as were found within the LSSM studies [3,4]: The tem-
perature growth leads to a considerable increase in the INNS cross section forEν
lower than the G0 resonance energy, and at certain T the INNS cross section be-
comes larger than the neutrino-electron scattering cross section atEν < 10 MeV.
What is more, our values of σνA(Eν) are very close to the LSSM values given
in [4].

Thus, the results of our study show that the present approach provides a
valuable tool for the evaluation of the inelastic neutrino-nucleus cross sections
under stellar conditions.
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[18] D.I. Sober, B.S. Metsch, W. Knüpfer et al., Phys. Rev. C31 (1985) 2054-2070.

51




