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Abstract. The aim of the study is to find a good simultaneous description of
the spectral function and the momentum distribution in relation to the realistic
scaling function obtained from inclusive electron-nuclei scattering experiments.
We start with a modified Hartree-Fock spectral function in which the energy-
dependent part (δ-function) is replaced by the Gaussian distributions with hole-
state widths as free parameters. We calculate the scaling function and the nu-
cleon momentum distribution on the basis of the spectral function constructed in
this way, trying to find a good description of the experimental data. The obtained
scaling function has a weak asymmetry and the momentum distribution has not
got a high-momentum tail in the case when harmonic-oscillator single-particle
wave functions are used. So, to improve the behavior of the momentum distribu-
tion we used the basis of natural orbitals (NO) in which short-range correlations
are partly incorporated. The results for the scaling function show again a weak
asymmetry, but in this case the momentum distribution has a high-momentum
tail. As a next step we include final-state interactions (FSI) in the calculations
to reproduce the experimentally observed asymmetry of the scaling function.

1 Introduction

Inclusive scattering of high energy electrons off nuclear targets has long been
recognized as a powerful tool to measure the nucleon momentum n(k) and re-
moval energy distribution [1–3]. The underlying picture is that at large momen-
tum transfer electron-nucleus scattering reduces to the incoherent sum of ele-
mentary scattering processes involving individual nucleons, distributed in mo-
mentum and removal energy according to the spectral function S(p, E). Thus,
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the data of inclusive quasielastic (QE) electron-nucleus scattering provide tests
for the nuclear many-body theory. This concerns mainly the possibility to es-
tablish the validity of the mean-field approximation (MFA) and the role of the
nucleon-nucleon correlations on the characteristics of the nuclear structure and
reactions, as well as the effects of the Final State Interactions (FSI) on the nu-
clear processes. As known, using the shell model, it is possible in principle to
obtain the contributions of different shells to S(p, E) and the momentum distri-
bution for each single-particle state. However, due to the residual interactions,
the hole states are not eigenstates of the residual nucleus but are mixtures of
several single-particle states. This leads to the spreading of the shell structure
and only a careful study of the momentum dependence of S(p, E) can separate
the contributions from different shells (see, e.g. [4]). Such analyses have been
carried out for few-body systems, complex nuclei and nuclear matter and they
have been concentrated mainly on the existence of high-momentum components
of the nucleon momentum distribution due to nucleon-nucleon (NN) correlation
effects [2–7]. This problem is of particular importance because, as is known
( [4, 7–11]) it is impossible within the MFA to describe simultaneously the den-
sity and momentum distributions in nuclei, so consistent analysis of the role of
the NN correlations is required using theoretical methods beyond the MFA in
the description of the results of relevant experiments.

In the early seventies, West first pointed out [12] that, if the electron-nucleon
processes are elastic and the final state state interactions between the struck par-
ticle and the spectator system can be neglected, the nuclear response R(q, ω),
which generally depends upon both momentum (q) and energy (ω) transfer,
exhibits scaling, i.e. it can be simply related to a function of only one kine-
matical variable, denoted y. Within the simplest nonrelativistic approxima-
tion, y can be identified with the minimum projection of the nucleon momen-
tum along the direction of the momentum transfer, while the scaling function
F (y) = (q/m)R(q, ω), wherem denotes the nucleon mass, can be directly writ-
ten in terms of the nucleon momentum distribution. Our study uses the results
concerning the y-scaling ( [1–3, 12–14]) and superscaling (based on ψ′-scaling
variable (e.g. [14–22]) obtained from the analyses of the vast amount of inclu-
sive electron scattering world data. Scaling of the first kind of the introduced
scaling function f(ψ′) (i.e. no dependence of ψ′ and f(ψ′) on the momentum
transfer q) is observed at excitation energies below the QE peak. Scaling of sec-
ond kind (i.e. no dependence on the mass number) turns out to be excellent in
the same region. When scaling of both first and second types occur, one says
that superscaling takes place. It was pointed out (ses, e.g. [17, 19–22]) that the
physical reason of the superscaling is the specific high-momentum tail of n(p)
which arises due to NN correlations and is similar for all nuclei. As was pointed
out in [23], however, the connection between the scaling function extracted from
the analysis of the cross-section data, and the spectral function only exists as-
suming very restricted approximations. Along this line, caution should be kept
in mind for the conclusions reached about the momentum distribution, because a
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close relationship between the latter and the scaling function only emerges after
some approximations are made. These are linked particularly to the integration
limits involved and the behavior of the spectral function [1]. In [23] the analysis
applied in the past to the scaling region (that is, negative values of the scaling
variable y) was extended to positive y and it led to results that differ from those
solely on the y-scaling region and provide a new insight on the problem how the
energy and momentum are distributed in the spectral function.

As is known (e.g. [23] and references therein) in the Plane Wave Impulse
Approximation (PWIA) the (e, e′N ) differential cross section factorizes in the
form:

[
dσ

dε′dΩ′dpNdΩN

]PWIA

(e,e′N)

= KσeN (q, ω; p, E , φN )S(p, E) , (1)

where σeN is the electron-nucleon cross section for a moving off-shell nucleon,
S(p, E) is the spectral function that gives the probability to find a nucleon of
certain momentum and energy in the nucleus (see e.g. [24–26]) and K is a kine-
matical factor [27]. In Eq. (1) p is the missing momentum and E is the excitation
energy that is essentially the missing energy minus the separation energy. Fur-
ther assumptions are necessary [23] to show how the scaling function F (q, ω)
emerges from the PWIA, namely, the spectral function is assumed to be isospin
independent and σeN is assumed to have a very mild dependence on p and E .
The scaling function can be expressed by the differential cross section of inclu-
sive QE (e, e′) processes:

F (q, ω) ∼=
[dσ/dε′dΩ′](e,e′)

σe(q, ω; p = |y|, E = 0)
. (2)

In Eq. (2) σe is taken at p = |y|, where the scaling variable y is the smallest value
of the missing momentum p that can occur in the processes of electron-nuclei
scattering for the smallest possible value of the missing energy (E = 0). It is
azimuthal angle-averaged single-nucleon cross section that also incorporates the
kinematical factor K:

σe ≡ K
A∑

i=1

∫
dφNi

σeNi

2π
. (3)

So, in the PWIA the scaling function F (q, ω) from Eq. (2) is expressed in terms
of the spectral function:

F (q, ω) = 2π
∫∫

Σ(q,ω)

p dp dE S(p, E) , (4)

where Σ(q, ω) presents the kinematically allowed region (for details, see e.g. [23]).
As known, only in the case when it is possible to extend the region Σ(q, ω) to
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infinity in the excitation energy plane (i.e. at Emax → ∞), the scaling function
would be directly linked to the momentum distribution of the A-nuclear system:

n(p) =
∫ ∞

0

dES(p, E). (5)

It was shown from the analyses of the inclusive electron-nucleus scattering
that at high values of the momentum transfer (q > 500 MeV/c) the extracted
scaling function Fexp(q, ω) becomes only a function of the scaling variable y
[Fexp(q, y)] [1, 16–18]. It was emphasized in [23] that Eq. (4) does not apply
to Fexp(q, ω) if it has ingredients not included in the PWIA, such as final-state
interactions, meson exchange currents, rescattering processes etc.

Introducing the separate longitudinal (L) and transverse (T ) (e, e′) data made
it possible to introduce a “universal” experimental dimensionless superscaling
function (using the Relativistic Fermi gas (RFG) model):

fexp(q, ω) ≡ kFFexp(q, ω); fL(T )
exp (q, ω) ≡ kFF

L(T )
exp (q, ω), (6)

kF being the Fermi momentum. We note, however, that the effects of FSI and
relativity on this function are important and, as emphasized in [23], any con-
clusion about the momentum distribution based on Eq. (4) should be made with
caution.

In the present work we study in more details the relationship between the
spectral function S(p, E) and the scaling function F (q, y) and try to extract in-
formation about the spectral function from the experimentally known scaling
function keeping in mind the restrictions of the PWIA. We take into account
the effects of FSI and some other peculiarities of the electron-nuclei scattering
mechanism. We make an attempt to construct the spectral function that corre-
sponds to the experimentally established scaling function following subsequent
steps. Firstly, we consider S(p, E) within and beyond the MFA (Hartree-Fock
method and beyond it) within the PWIA. Secondly, we take into account the FSI
calculating the inclusive electron-nucleus cross section using the Dirac optical
potential and determine the spectral function in this case as well. In all steps
we relate the obtained results for the scaling function to the empirically obtained
one. We establish a relationship of the obtained single-particle widths in the
approach to the experimental ones.

The theoretical scheme, the numerically obtained results and the discussion
are given in Section 2. The conclusions are presented in Section 3.

2 Scaling Function in Relation to Spectral Function and
Momentum Distributions

In this Section we give the main relationships used in our approach to find a good
simultaneous description of the spectral function, the momentum distribution
and the scaling function. As mentioned in the Introduction, the scaling function
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is given in the PWIA by Eq. (2) as a ratio between the inclusive electron cross
section and the electron-nucleon cross section at p = |y| and E = 0. Also in
the PWIA the scaling function is expressed in terms of the spectral function by
Eq. (4). It was shown in [23] that in this scheme the equations that relate the
scaling function F (q, y) with the spectral function in PWIA in the regions of
negative and positive values of the scaling variable y have the form:

1
2π
F (q, y) =

∫ Y (q,y)

−y
p dp

∫ E−(p;q,y)

0

dES(p, E) if y < 0 (7)

1
2π
F (q, y) =

∫ y

0

p dp

∫ E−(p;q,y)

E+(p;q,y)

dES(p, E)

+
∫ Y (q,y)

y

p dp

∫ E−(p;q,y)

0

dES(p, E) if y > 0 (8)

In Eqs. (7) and (8):

y(q, ω) =
{

(M0
A + ω)

√
Λ2 −M02

B W 2 − qΛ
}
/W 2, (9)

Y (q, ω) =
{

(M0
A + ω)

√
Λ2 −M02

B W 2 + qΛ
}
/W 2, (10)

E±(p; q, ω) = (M0
A + ω) −

[√
(q ± p)2 +m2

N +
√
M02

B + p2

]
, (11)

where ω is the energy transfer,M0
A is the target nuclear mass,mN is the nucleon

mass, M0
B is the ground-state mass of the residual nucleus, Λ ≡ (M02

B −m2
N +

W 2)/2 with W ≡√
(M0

A + ω)2 − q2 being the center-of-mass energy.
In the Relativistic Fermi Gas model the dimensionless scaling variable ψ is

introduced [14–17] in the form:

ψ =
1√
ξF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

, (12)

where ηF = kF /mN , kF is the Fermi momentum, ξF =
√

1 + η2
F − 1 is

the dimensionless Fermi kinetic energy, κ = q/(2mN ), λ = ω/(2mN ), and
τ = |Q2|/(4m2

N ) = κ2 − λ2 is the dimensionless absolute value of the squared
4-transferred momentum. The physical meaning of ψ2 (in units of the Fermi
energy) is the smallest kinetic energy that one of the nucleons responding to an
external probe can have. In studies of electron scattering scaling one usually
includes a small energy shift by replacing ω by ω − Eshift in order to force the
maximum of the QE response to occur for ψ′ = 0 (see, for example, [16–18]).
This is equivalent to taking λ → λ′ = λ − λshift with λshift = Eshift/2mN and
correspondingly τ → τ ′ = κ2 − λ′2 in Eq. (12).
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The scaling variables y and ψ are closely related [16, 17]:

ψ =
(
y

kF

)⎡

⎣1 +

√

1 +
m2
N

q2
1
2
ηF

(
y

kF

)
+ O[η2

F ]

⎤

⎦ � y

kF
. (13)

The dimensionless scaling function f(ψ) is introduced (e.g. [17]) in the RFG
model:

fRFG(ψ) = kFFRFG(ψ) � 3
4
(
1 − ψ2

)
Θ
(
1 − ψ2

)
. (14)

As shown in the RFG model, at sufficiently high momentum q (> 500 MeV/c)
f(ψ) depends only on ψ and not on the transfer momentum q (thus showing scal-
ing of the first kind) as well as f(ψ) and ψ are independent of the mass number
A for a wide range of nuclei from 4He to 197Au (showing scaling of the sec-
ond kind), so the scaling function fRFG(ψ) exhibits superscaling. As mentioned
in the Introduction, in the case in which it is possible to extend the kinemati-
cally allowed region Σ(q, ω) to infinity in the excitation energy plane, that is
Emax → ∞, the scaling function can be linked directly to the true momentum
distribution of the A-nuclear system (see Eq. (5)).

2.1 Spectral Function in the Hartree-Fock Method and Beyond It

As noted in the Introduction the aim of the present work is to construct realistic
spectral function that leads to a good agreement with the scaling function ob-
tained from the inclusive electron-nuclei scattering data. We start with a given
form of the spectral function, e.g. that in the Hartree-Fock method:

SHF (p, E) =
∑

i

4(2li + 1)ni(p)δ(E − Ei), (15)

where ni(p) is the momentum distribution of the shell-model single-particle
state i and Ei is the single-particle energy. As a next step we construct a more
complicated spectral function in which the energy-dependent part in Eq. (15)
(the δ-function) is replaced by the Gaussian distribution Gσi

(E − Ei):

S(p, E) =
∑

i

4(2li + 1)ni(p)Gσi
(E − Ei), (16)

where

Gσi
(E − Ei) =

1
σi
√
π
e
− (E−Ei)

2

σ2
i (17)

and σi is a parameter for a given single-particle state i that is related to the width
of the hole state i. For the 16O nucleus we consider two parameters σ1s and
σ1p that are related to the widths of the 1s and 1p hole states, respectively. In
the calculations we are looking for a best fit of these parameters that gives a
good description of the experimental data for the scaling function f(ψ′), for the
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Figure 1. The results for the scaling function f(ψ) (for σ = 10–90 MeV) are compared
with the experimental data.

experimental values for the widths of the hole states and the high-momentum
tail of the momentum distribution.

We started our calculations taking ni(p) to be the momentum distribution
of the harmonic-oscillator shell-model single-particle state i. Let firstly σ1s =
σ1p = σ and let σ varies in the region σ = 10–90 MeV. In Figure 1 are given
the results for the scaling function compared with the longitudinal experimental
data.

Our next step was to calculate the scaling function f(ψ′) at fixed values
of σ1s and varying σ1p = 10–90 MeV. The results are given in Figure 2 for
σ1s = 10 and 90 MeV and σ1p varying between 10 and 90 MeV.

Figure 2. The results for the scaling function f(ψ) (for σ1s = 10 and 90 MeV and σ1p

varying between 10 and 90 MeV) are compared with the experimental data.
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Figure 3. The results for the scaling function f(ψ) (for σ1p = 10 and 90 MeV and σ1s

varying between 10 and 90 MeV) are compared with the experimental data.

In the next Figure 3 we give the results when σ1p is fixed (e.g. σ1p = 10 and
90 MeV) while σ1s is varying from 10 to 90 MeV.

One can see that at fixed values of the parameter σ1s and σ1p = 10–90 MeV
the main changes of the scaling function are observed in the form and the max-
imum value. Unlike, in the case of fixed values of σ1p and σ1s = 10–90 MeV,
the main changes of the scaling function are visible in the maximum, but not in
the form.

The momentum distribution calculated by Eq. (5) is the HF momentum dis-
tribution, so in this first attempt (using HO single-particle wave functions) it is
impossible the momentum distribution to have a high-momentum tail. In this
aspect, our next step is to use natural orbitals (NO’s) for the single-particle wave
functions and occupation numbers taken from a method where short-range NN
correlations are accounted for. For example, we use the NO representation of
the one-body density matrix (OBDM) obtained within the lowest-order approx-
imation of the Jastrow correlation method [28].

The NO’s φα(r) are defined [29] as the complete orthonormal set of single-
particle wave functions that diagonalize the OBDM:

ρ(r, r′) =
∑

a

Naϕ
∗
a(r)ϕa(r

′). (18)

The eigenvalues Nα (0 � Nα � 1,
∑
αNα = A) are the natural occupation

numbers.
Our calculations were continued using NO single-particle wave functions to

obtain ni(p) for the expression of the spectral function given by Eq. (16). The
results for the scaling function obtained using NO’s and HO single-particle wave
functions for various values of the parameters σ1s and σ1p are given in Figure 4.

In Figure 5 the resulting nucleon momentum distributions are given and
compared. One can see n(p) for the RFG model, also that one calculated us-
ing HO single-particle wave functions, the NO’s from the Jastrow correlated
approach [28], and the result obtained with the Coherent Density Fluctuation
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Figure 4. The results for the scaling func-
tion f(ψ) obtained using NO’s (dashed
lines) and harmonic oscillator (HO) single-
particle wave functions (solid line) for var-
ious values of the parameters σ1s = σ1p =
10 MeV (red line), 30 MeV (green line)
and 70 MeV (black line).

Figure 5. (Color online) The results for the
momentum distribution calculated by har-
monic oscillator single-particle wave func-
tions (HO – green line); NO taken from the
Jastrow model (Jastrow – blue line); Rela-
tivistic Fermi Gas (RFG – red line); CDFM
results (CDFM – grey area [20, 22]); LFD
results (LFD – olive line [22]).

Model (CDFM) ( [4, 7, 11], see also [20, 22]). The nucleon momentum dis-
tribution nLFD obtained in [22, 30] by using the Light-Front Dynamics method
(LFD) [31] is given in Figure 5 as well.

2.2 Account for FSI

In this subsection we will give briefly the approach that we use in our calcula-
tions to take into account the FSI in the consideration of the spectral function,
the momentum distribution and the scaling function.

As a next step we continued our study of inclusive electron-nuclei cross sec-
tions by incorporation of two types of FSI effects (following Ref. [32]): Pauli
blocking and reinteraction of the struck nucleon with the spectator system de-
scribed by means of the time-independent optical potential (OP):

U = V − ıW (19)

proposed in [33]. The authors of [32] argue that the result is equivalent to making
the substitution:

δ(...) → W/π

W 2 + [...− V ]2
(20)

(see [34]) in the expression for the inclusive electron-nuclei cross section:

dσt
dωd|q| = 2πα2 |q|

E2
k

∫
dE d3p

St(p, E)
EpEp′

δ
(
ω+M−E−Ep′

)
Lem
μνH

μν
em, t. (21)
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In Eq. (21) the index t denotes the nucleon isospin, Lem
μν is the leptonic tensor,

Hμν
em, t is the hadronic tensor and St(p,E) is the proton (neutron) spectral func-

tion.
The real and imaginary part of the OP are calculated using a Dirac OP from

Ref. [35] averaging it over spatial coordinate. The potential is evaluated at root-
mean-square (rms) radii from Ref. [35]. As a result the OP U(p′) related to the
scalar (S) and vector (V ) part of the potential in [35] is obtained in the form (see
also [32]):

Ep′ + U(p′) =
√

[M + S(Tp′ , r̄S)]2 + p′2 + V (Tp′ , r̄V ). (22)

In Figure 6 we give the calculated real and imaginary parts of the OP U(p′).
Following the approach of Ref. [32] we continued our calculations of the

scaling function using Eq. (2), in which the cross section in the nominator is cal-
culated by accounting for FSI using the Dirac OP, i.e. exchanging the δ-function
in Eq. (21) as shown in Eq. (20). The expression for S(p, E) in Eq. (21) is taken
in the form (16), where we use the momentum distributions ni(p) obtained in
various cases:

i) in the RFG model,

ii) using NO’s from the Jastrow correlation method.

The results in the case (i) are presented in Figure 7 for a given momentum

Figure 6. (Color online) The results
for the real and imaginary part of the
optical potential U(p′) for 12C calcu-
lated by Eq. (22) using a Dirac OP from
Ref. [35].

Figure 7. (Color online) The results for the
scaling function f(ψ′) with and without ac-
counting for the FSI in the RFG model (for a
given momentum transfer q = 1 GeV/c and
energy of the initial electron ε = 1 GeV) are
compared with the experimental data, Gum-
bel distribution and CDFM result using c1 =
0.63 [22].
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transfer q = 1 GeV/c and energy of the initial electron ε = 1 GeV with and
without accounting for the FSI.

The results for the scaling function f(ψ′) using the SHF (p, E) [Eq. (15)]
with HO single-particle wave functions are presented in Figure 8 for a given mo-
mentum transfer q = 1 GeV/c and energy of the initial electron ε = 1 GeV with
and without accounting for the FSI. In this case we consider two different types
of the time-independent optical potential for 16O: obtained by Eqs. (19,20,22)
using the scalar and vector part of the potential from [35] and using the imagi-
nary part of the potential U(p′) given in [34]

W =
�c

2
ρnuclσNN

|p′|
Ep′

, (23)

where the values of ρnucl and σNN for 16O are taken to be: ρnucl = 0.16 fm−3

and σNN = 40 mb.
As can be seen from Figures 7 and 8 the effects of accounting FSI are: the

maximum of the scaling function decreases, while the tails of the scaling func-
tion for negative and positive values of ψ′ increase. Also from Figure 8 can
be seen the important role of the type of the time-independent optical potential
used.

Figure 8. (Color online) The results
for the scaling function f(ψ′) with and
without accounting for the FSI using
the spectral function in the Hartree-Fock
method Eq. (15) with HO single-particle
wave functions (for a given momentum
transfer q = 1 GeV/c and energy of the
initial electron ε = 1 GeV) are compared
with the experimental data, Gumbel dis-
tribution and CDFM result using c1 =
0.63 [22].

Figure 9. (Color online) The results for
the scaling function f(ψ′) with accounting
for the FSI using NO’s from the Jastrow
correlation method (for a given momentum
transfer q = 1 GeV/c, energy of the initial
electron ε = 1 GeV, and parameters σ1s =
8.7 MeV, σ1p = σ1d = σ1f = 0.5 MeV)
are compared with the experimental data,
Gumbel distribution and CDFM result us-
ing c1 = 0.63 [22].
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The results in the case (ii) are presented in Figure 9 for a given momentum
transfer q = 1 GeV/c and energy of the initial electron ε = 1 GeV with account-
ing for the FSI (we consider two different types of the time-independent optical
potential for 16O the same as in the Figure 8). The results depend very weakly
on the choice of parameters σi. There the value of the parameter σ1s is fixed
to be 8.7 MeV (that corresponds to the experimental width of the 1s – state in
16O [36]) and the values of σ1p = σ1d = σ1f = 0.5 MeV are fixed.

3 Conclusions

The results obtained show that:

1. The total momentum distribution (Figure 5) has a more realistic high-
momentum tail when NO’s obtained from the Jastrow correlation method.

2. In the case of using NO’s, the behavior of f(ψ′) (Figure 4) is quite simi-
lar to that from our calculations using HO single-particle wave functions.
A weak asymmetry of f(ψ′) exists but the results do not reproduce the
experimental scaling function.

3. The effects of accounting FSI are: the maximum of the scaling function
decreases, while the tails of the scaling function for negative and positive
values of ψ′ increase.

4. The results for the scaling function reproduce better experimental data
when we take into account the effects of FSI using the imaginary part of
the potential U(p′) given in [34].
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C 39 (1989) 259; Phys. Rev. C 43 (1991) 1155.

[3] C. Ciofi degli Atti, D.B. Day, S. Liuti, Phys. Rev. C 46 (1992) 1045; C. Ciofi degli
Atti and S. Simula, Phys. Rev. C 53 (1996) 1689; C. Ciofi degli Atti and G. B. West,
Phys. Lett. B 458 (1999) 447.

[4] A.N. Antonov, P.E. Hodgson, and I.Zh. Petkov, Nucleon Correlations in Nuclei,
Springer-Verlag, Berlin-Heidelberg-New York (1993).

[5] X. Ji, J. Engel, Phys. Rev. C40 (1989) R497.
[6] Ciofi degli Atti, C.B. Mezzetti, Phys. Rev. C 79 (2009) 051302.
[7] A.N. Antonov, P.E. Hodgson, and I.Zh. Petkov, Nucleon Momentum and Density

Distributions in Nuclei (Clarendon Press, Oxford, 1988).
[8] O. Bohigas and S. Stringari, Phys.Lett. B 95 (1980) 9.
[9] M. Jaminon, C. Mahaux and H. Ngo, Phys. Lett. B 158 (1985) 103.

[10] E. Moya de Guerra, P. Sarriguren, J.A. Caballero, M. Casas, and D.W.L. Sprung,
Nucl. Phys. A529 (1991) 68.

[11] A.N. Antonov, V.A. Nikolaev, and I.Zh. Petkov, Bulg. J. Phys. 6 (1979) 151; Z.
Phys. A 297 (1980) 257; ibid. 304 (1982) 239; Nuovo Cimento A 86 (1985) 23;
Nuovo Cimento A 102 (1989) 1701; A.N. Antonov, D.N. Kadrev, and P.E. Hodgson,
Phys. Rev. C 50 (1994) 164.

[12] G.B. West, Phys. Rep. 18 (1991) 263.
[13] I. Sick, D.B. Day, and J.S. McCarthy, Phys. Rev. Lett. 45 (1980) 871.
[14] W.M. Alberico, A. Molinari, T.W. Donnelly, E.L. Kronenberg and J.W. Van Orden,

Phys. Rev. C 38 (1988) 1801.
[15] M.B. Barbaro, R. Cenni, A. De Pace, T.W. Donnelly, and A. Molinari, Nucl. Phys.

A643 (1998) 137.
[16] T.W. Donnelly and I. Sick, Phys. Rev. Lett. 82 (1999) 3212.
[17] T.W. Donnelly and I. Sick, Phys. Rev. C 60 (1999) 065502.
[18] C. Maieron, T.W. Donnelly and I. Sick, Phys. Rev. C 65 (2002) 025502.
[19] A.N. Antonov, M.K. Gaidarov, D.N. Kadrev, M.V. Ivanov, E. Moya de Guerra, and

J.M. Udias, Phys. Rev. C 69 (2004) 044321.
[20] A.N. Antonov, M.K. Gaidarov, M.V. Ivanov, D. N. Kadrev, E. Moya de Guerra, P.

Sarriguren, and J. M. Udias, Phys. Rev. C 71 (2005) 014317.
[21] A.N. Antonov, M.V. Ivanov, M.K. Gaidarov, E. Moya de Guerra, P. Sarriguren, and

J.M. Udias, Phys. Rev. C 73 (2006) 047302.
[22] A.N. Antonov, M.V. Ivanov, M.K. Gaidarov, E. Moya de Guerra, J.A. Caballero,

M.B. Barbaro, J.M. Udias, and P. Sarriguren, Phys. Rev. C 74 (2006) 054603.
[23] J.A. Caballero, M.B. Barbaro, A. N. Antonov, M. V. Ivanov, T.W. Donnelly, Phys.

Rev. C 81 (2010) 055502.
[24] S. Frullani and J. Mougey, Adv. Nucl. Phys. 14 (1984) 1.
[25] S. Boffi, C. Giusti, F.D. Pacati, M. Radici, Phys. Rep. 226 (1993) 1; Electromagnetic

Response of Atomic Nuclei (Oxford University Press, Oxford, 1996).

84



Scaling Function, Spectral Function and Nucleon Momentum Distribution ...

[26] J.J. Kelly, Adv. Nucl. Phys. 23 (1996) 75.
[27] A.S. Raskin, T.W. Donnelly, Ann. of Phys. 191 (1989) 78.
[28] M.V. Stoitsov, A.N. Antonov and S.S. Dimitrova, Phys. Rev. C 48 (1993) 74.
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