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Abstract. Nucleon momentum distributions of even-even isotopes of Ni, Kr,
and Sn are studied in the framework of deformed self-consistent mean-field
Skyrme HF+BCS method, the theoretical approach based on the light-front dy-
namics and the theoretical method based on the local density approximation.
The isotopic sensitivities of the calculated neutron and proton momentum distri-
butions are investigated together with the effects of pairing and nucleon-nucleon
correlations. The role of deformation on the momentum distributions in even-
even Kr isotopes is discussed. For comparison, the results for the momentum
distribution in nuclear matter are also given.

1 Introduction

Exotic nuclei are known to exhibit qualitatively new phenomena and provide
a new testing ground for the understanding of quantum many-body science. It
is a challenge for the nuclear theory to study entirely new nuclear topologies
comprising, e.g. regions of nearly pure neutron matter and exotic nuclear shapes,
new types and phases of nucleonic matter and others.

The study of exotic nuclei is inspired by the recent development of radioac-
tive ion beam facilities in GSI (Germany) [1] and RIKEN (Japan) [2, 3] that
offer the worldwide unique opportunity to use electrons as probe particles in
investigations of the structure of these nuclei. In Ref. [4] we studied charge
form factors of light exotic nuclei (6,8He, 11Li, 14Be, 17,19B) using various the-
oretical predictions of their charge densities. In Ref. [5] our calculations of the
charge form factors of exotic nuclei were extended from light (He, Li) to medium
and heavy nuclei (Ni, Kr, and Sn). For the Ni, Kr, and Sn isotopes the densi-
ties have been obtained in the deformed self-consistent mean-field Hartree-Fock
(HF)+BCS method with density-dependent (DD) Skyrme interaction [6–8]. We
refer to this mean field approach as DDHF+BCS. A detailed study of the charge
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radii and neutron skin in Ni, Kr, and Sn nuclei, as well as of the formation of the
proton skin, has been performed within the same method in [9].

Another important characteristic of the nuclear ground state is the nucleon
momentum distribution (NMD) n(k). The scaling analyses of inclusive electron
scattering from a large variety of nuclei (see, e.g. [10–13]) demonstrated the
existence of high-momentum components of NMD at momenta k > 2 fm−1.
It has been shown [14–17] that it is due to the effects of nucleon-nucleon (NN)
correlations in nuclei (for a review, see e.g. [18]). It has been pointed out that this
specific feature of n(k)/A is similar for all nuclei, and that it is a physical reason
for the scaling and superscaling phenomena in nuclei. As known [18, 19], the
mean-field approximation (MFA) is unable to describe simultaneously the two
important characteristics of the nuclear ground state, the density and momentum
distribution. Therefore, a consistent analysis of the effects of the NN correlations
on both quantities is required using theoretical methods beyond the MFA in the
description of relevant phenomena, e.g. the scaling ones. The self-consistent
DDHF approximation has been applied in [7] to calculate NMD in spherical and
deformed Nd isotopes, studying the effects of deformation, as well as those of
pairing and of dynamical short-range NN correlations.

The main aim of our work (see also [20]) is to calculate the NMD for the
same isotopic chains of neutron-rich nuclei (Ni, Kr, and Sn) for which we had
studied charge densities, radii, form factors, halo, and skin in our previous works
[5] and [9]. The mean-field contributions to n(k) in these nuclei are calculated
within the DDHF+BCS approach. The remaining effects of the NN correlations
are considered in two ways, namely, within the approach (see [16,17,21]) using
the light-front dynamics (LFD) method (e.g., [22]) and in that [23] based on the
local density approximation (LDA). Several questions are investigated, such as
the sensitivity of n(k) to all details of the calculations, e.g.: (i) to different types
of Skyrme forces; (ii) to the pairing correlation effects; (iii) to the effects of
nuclear deformation; (iv) to the strength of the NN correlations included in the
LFD and LDA approaches (respectively, to the values of the correlations strength
parameters β and γ). A special attention is paid to the isotopic and isotonic
sensitivity of the proton and neutron momentum distributions. The results for
n(k) in the exotic nuclei are compared with that in nuclear matter (NM).

2 Theoretical Framework

2.1 Deformed Skyrme HF+BCS Formalism

Some of the results have been obtained from self-consistent deformed Hartree-
Fock calculations with density-dependent Skyrme interaction [8] and pairing
correlations. Pairing between like nucleons has been included by solving the
BCS equations at each iteration either with a fixed pairing gap parameter (deter-
mined from the odd-even experimental mass differences) or with a fixed pairing
strength parameter. We consider in this paper the Skyrme force SLy4 that gives
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an appropriate description of bulk properties of spherical and deformed nuclei.
Following the formalism given in Ref. [7] the single-particle Hartree-Fock

wave functions in momentum space Φ̃i(�k, σ, q) can be expressed as

Φ̃i(�k, σ, q) = χqi
(q)

∑

α

Ciαφ̃α(�k, σ). (1)

Similarly to the spin-independent proton, neutron and total densities, we de-
fine in momentum space the proton, neutron and total momentum distributions
by

n(�k) = n(k⊥, kz) =
∑

i

2v2
i ni(k⊥, kz) , (2)

where v2
i are the occupation probabilities resulting from the BCS equations and

k⊥, kz are the cylindrical coordinates of �k. The single-particle momentum dis-
tributions ni(�k) are given by [7]

ni(�k) = ni(k⊥, kz) = |Φ̃+
i (k⊥, kz)|2 + |Φ̃−

i (k⊥, kz)|2 . (3)

2.2 Methods Going Beyond the MFA: LFD and LDA Approaches

Here the effects of NN correlations accounted for in two correlation methods
on the high-momentum contributions to the nucleon momentum distribution are
considered.

Using the natural-orbital representation of the one-body density matrix [24],
n(k) is written as a sum of the contributions from the hole-states [ñh(k)] (states
up to the Fermi level (F.L.)) and the particle-states [ñp(k)] (see also [16]) for
protons (Z) and neutrons (N):

nZ(N)(k) = ñhZ(N)(k) + ñpZ(N)(k), (4)

where

ñhZ(N)(k) =
C(k)
Z(N)

F.L.∑

nlj

2(2j + 1)λnlj |R̃nlj(k)|2 (5)

and

ñpZ(N)(k) =
C(k)
Z(N)

∞∑

F.L.

2(2j + 1)λnlj |R̃nlj(k)|2. (6)

In our work we substitute ñhZ(N)(k) in (4) and (5) by

ñhZ(N)(k) =
C(k)
Z(N)

ñZ(N)(k), (7)

where ñZ(N)(k) is expressed by the NMD nDDHFZ(N) (k) obtained within the DDHF
formalism

ñZ(N)(k) =
Z(N)nDDHFZ(N) (k)

∫
d�k′C(k′)nDDHFZ(N) (k′)

. (8)
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In (5)-(8) C(k) = mN/[(2π)3
√
k2 +m2

N ]. According to the assumption made
in [16, 17, 21], the particle-state contribution [ñpZ(N)(k)] in (4) and (6) can be
substituted by (up to a normalization factor):

ñp
Z(N)(k) = β

[
n2(k) + n5(k)

]
, (9)

where β is a parameter, and n2(k) and n5(k) are expressed by angle-averaged
corresponding components of the deuteron wave function [21].

Finally, the normalized to unity proton (neutron) momentum distribution has
the form:

nZ(N)(k) =
C(k)ñZ(N)(k) + Z(N)β

[
n2(k) + n5(k)

]

∫
d�k′

{
C(k′)ñZ(N)(k′) + Z(N)β

[
n2(k′) + n5(k′)

]} . (10)

Next, according to Ref. [23], one can introduce proton (neutron) momentum
distribution within the local density approximation in the form:

nZ(N)(k) = nMFA
Z(N) (k) + δnZ(N)(k), (11)

where nMFA
Z(N) (k) is the mean-field contribution, whereas δnZ(N)(k) embodies

the corrections due to dynamical correlations not included in the MFA. If one
applies the LDA to the second term of (11), the nucleon momentum distribution
nZ(N)(k) can be written in the form:

nZ(N)(k) = nMFA
Z(N) (k) +

1
4π3

∫
δν(kZ(N)

F (r), k)d�r, (12)

where δν(kZ(N)
F (r), k) corresponds to the occupation probability that is en-

tirely due to the effects of dynamical correlations induced by the NN interaction.
The local Fermi momentum k

Z(N)
F (r) is related to the proton (neutron) density

through the relation

k
Z(N)
F (r) =

[
3π2ρZ(N)(r)

]1/3
. (13)

By definition of kZ(N)
F (r) one has

∫
δν(kZ(N)

F (r), k)d�k = 0. Choosing a corre-
lation function of the form f(r) = 1−e−γ2r2 and using the lowest-order cluster
approximation an analytical expression for δν(kZ(N)

F , k) can be obtained [23].
As in the approach based on the LFD method discussed above, in our work

we use for nMFA
Z(N) (k) the momentum distributions obtained from DDHF calcula-

tions nDDHFZ(N) (k). For the densities ρZ(N)(r) entering (13) we use the HF+BCS
proton (neutron) densities [9].

3 Results of Calculations and Discussion

A comparison of the results for the neutron and proton momentum distributions
of 64Ni, 84Kr, and 120Sn nuclei obtained in the correlation methods is given in
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Figure 1. Neutron (solid line) and proton (dashed line) momentum distributions obtained
within the DDHF+BCS (black), LFD (blue), and LDA (red) methods for 64Ni (a), 84Kr
(b), and 120Sn (c) nuclei. The normalization is:

R
nn(p)(k)d�k = 1.

Figure 1 together with the HF momentum distributions. As can be seen, for all
nuclei the inclusion of NN correlations strongly affects the high-momentum re-
gion of NMD. At k > 1.5 fm−1 both LFD and LDA momentum distributions
start to deviate from the DDHF+BCS case. They behave rather similar in the
interval 1.5 < k < 3 fm−1. At k > 3 fm−1 the LFD method predicts system-
atically higher momentum components compared to LDA momentum distribu-
tions. This observation can be explained by the different extent to which NN cor-
relations are taken into account in both approaches. Our results for the NMD’s
in the LFD method for large values of k (k > 2 fm−1) are similar to those
obtained within the Jastrow correlation method and, thus, the high-momentum
tails of n(k) are caused by the short-range NN correlation effects. The LDA
approach through the nuclear matter dynamic effects and using the local Fermi
momentum k

Z(N)
F (r) calculated self-consistently by means of the HF density

(13) produces less pronounced high-momentum tail, but still the results are very
close to those obtained in the LFD method. As was already shown, at k > 1.5
fm−1 the DDHF+HF momentum distributions fall off rapidly by several orders
of magnitude in contrast to the correlated NMD’s. In addition, we observe that:
(i) the results shown above are similar for all nuclei in a given isotopic chain
and going from Ni to Sn isotopes, as well; (ii) the behavior of n(k) is similar
for protons and neutrons; (iii) at high k the proton and neutron NMD’s obtained
within the LFD method cannot be distinguished from each other because the
high-momentum tails in this approach are determined by the high-momentum
component of the nucleons in the deuteron [21]; (iv) concerning the NMD’s cal-
culated in the LDA approach, some difference between n(k) for protons and
neutrons can be observed due to Z(N)-dependence of the local Fermi momen-
tum kF .

In the next Figures 2 and 3 we show the neutron nn(k) and proton np(k)
momentum distributions of some selected isotopes in the Ni chain, the same
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Figure 2. (a) Neutron momentum distributions obtained within the DDHF+BCS (solid
line), LFD (dotted line), and LDA (dashed line) methods for 50Ni, 64Ni, and 78Ni iso-
topes. The normalization is:

R
nn(k)d�k = 1. The DDHF+BCS results, as well as the

LFD and LDA results are separately shown in a linear scale in (b) and (c), respectively.

which has been considered in Ref. [9] to calculate important nuclear properties
in coordinate space. The results are presented in both logarithmic and linear
scales in order to study the isotopic sensitivity of these momentum distributions
in the high-momentum region and in the region of small momenta, respectively.
In addition, in each of the figures the results for neutron and proton momentum
distributions in the DDHF+BCS method and in the correlation LFD and LDA
approaches at k < 2 fm−1 are given separately in panels (b) and (c).

It is seen from the figures that the evolution of the NMD’s as we increase
the number of neutrons consists of an increase of the high-momentum tails (for
k > 1.5 fm−1) of nn(k), while the effect on np(k) is opposite. However, the
spreading of the tails corresponding to np(k) of the considered isotopes is of the
same order although the number of protons remains the same. In this respect,
the results presented in Figure 3 are challenging because they show how proton
momentum distributions “feel” the different number of neutrons in exotic nuclei.
We would like also to emphasize that the LFD method does not show this iso-
topic sensitivity, in contrast to the HF and LDA methods which still demonstrate
this trend. Concerning the low-momentum region it can be seen from Figures 2
and 3 that NMD’s are very sensitive to the details of the calculations. In this
region nn(k) decreases while, on the contrary, np(k) increases with the increase
of the number of neutrons N . This is a common feature of the calculated results
obtained in all methods. Nevertheless, in this region the spreading is consider-
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Figure 3. The same as in Figure 2, but for the proton momentum distributions.

ably reduced.
In Figure 4 a comparison of the results for the total momentum distribution

n(k) of nuclear matter calculated within the MFA and correlation methods used
in our work is shown. The HF momentum distribution is strongly affected by
pairing correlations which build up a long tail at high momentum (k > kF ).
Comparing this result with the result illustrated in Ref. [20] for 84Kr, the differ-
ent role played by pairing correlations on the DDHF momentum distribution of
NM and of finite nuclei becomes clear. Moreover, it is interesting to explore the
case when one includes other type of correlations in NM. Stringari et al. [23]
have already shown in their model based on the LDA the prediction for n(k) in
the case of nuclear matter. An enhancement of the high-momentum components
of n(k) can be seen from Figure 4 when both LDA and LFD methods are used.
Hence, in nuclear matter the effects of short-range and tensor correlations are
much stronger than the BCS-correlations taken into account in the DDHF+BCS
calculations.

4 Conclusions

The theoretical investigation of the neutron, proton, and total momentum distri-
butions of medium and heavy exotic nuclei, especially of Ni, Kr, and Sn even-
even isotopes, was performed on the base of the mean-field method, as well
as of two correlation methods taking into account the NN correlations at short
distances.

The study of the isotopic sensitivity of various kinds of momentum distri-
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Figure 4. Comparison of DDHF results for the momentum distributions of nuclear matter
with (dashed line) and without (solid line) pairing correlations with the results from LFD
(dotted line) and LDA (dash-dotted line) methods.

butions shows different trends. For a given isotopic chain, we find that in the
high-momentum region (k > 1.5 fm−1) the high-momentum tails of the neu-
tron momentum distributions nn(k) increase with the increase of the number of
neutronsN , while the proton momentum distributions np(k) exhibit an opposite
effect. In the same region the LFD method does not show this isotopic sensitiv-
ity, in contrast to the DDHF+BCS and LDA methods. At low momenta nn(k)
decreases while, on the contrary, np(k) increases with the increase of N . Addi-
tionally to the isotopic sensitivity we studied how the momentum distributions
of some isotones are modified keeping the neutron number constant. We find
that the total momentum distributions of 78Ni, 86Kr, and 100Sn nuclei (N=50)
reveal the same high-momentum tails in all methods used.

Our results for the neutron and proton momentum distributions of 98Kr iso-
tope show small changes in the overall behavior for the oblate and prolate shapes.
Although the neutron and proton densities change with deformation [9], the
momentum distributions demonstrate a very weak dependence on the charac-
ter of deformation. The pairing correlations are shown to influence the high-
momentum behavior of the neutron nn(k), proton np(k), and total n(k) mo-
mentum distributions in the case of 84Kr, but the differences between the results
with or without BCS-correlations included in the calculations are very small.
The effect of pairing correlations on the HF momentum distribution is much
stronger in the case of nuclear matter producing a tail for momenta k > kF .
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It turns out that nn(k) does not change significantly for different values of
β, thus showing the strong presence of correlations at short distances within the
LFD method not only for the stable, but also for the exotic nuclei. However,
a larger sensitivity of nn(k) on the parameter γ in the LDA approach appears,
particularly in the interval 1.5 < k < 3 fm−1. In our opinion, however, the
question for the specific values of the parameters β and γ which determine the
strength of the correlations is still open.

We emphasize that, in our work, a possible practical way to make predictions
for the momentum distributions of exotic nuclei far from the stability line is
proposed that provides a systematic description of n(k) in medium-weight and
heavy nuclei. The comparison of the predicted nucleon momentum distributions
with the results of possible experiments using a colliding electron-exotic nuclei
storage rings would show the effect of the neutron excess in these nuclei and
will be also a test of various theoretical models of the structure of exotic nuclei.
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