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Abstract. The 6He+12C elastic scattering data at beam energies of 3, 38.3
and 41.6 MeV/nucleon are studied utilizing the microscopic optical potentials
obtained by a double-folding procedure and also by using those inherent in the
high-energy approximation. The calculated optical potentials are based on the
neutron and proton density distributions of colliding nuclei established in an ap-
propriate model for 6He and obtained from the electron scattering form factors
for 12C. The depths of the real and imaginary parts of the microscopic opti-
cal potentials are considered as fitting parameters. At low energy the volume
optical potentials reproduce sufficiently well the experimental data. At higher
energies, generally, additional surface terms having form of a derivative of the
imaginary part of the microscopic optical potential are needed. The problem
of ambiguity of adjusted optical potentials is resolved requiring the respective
volume integrals to obey the determined dependence on the collision energy.

1 Introduction

The availability of radioactive ion beams facilities made it possible in the past
decades to carry out many experiments and to get information concerning the
structure of exotic light nuclei with a localized nuclear core and a dilute few-
neutron halo or skin as well as on the respective reaction mechanisms (for more
information see, e.g., the recent review of the problem in Ref. [1]). In this sense,
6He is a typical nucleus having the weak binding energy and extended neutron
halo in its periphery. The latter is the reason why in collisions with the proton
and nuclear targets the projectile nucleus 6He is breaking up with a comparably
large probability that causes the flux loss in the elastic channel. Therefore, the
study of elastic scattering of 6He on protons or light targets is a powerful tool to
get information on peculiarities of the mechanism of such processes.

The data on cross sections of processes with light exotic nuclei have been an-
alyzed using various phenomenological and microscopic methods. Among the
latter we should mention the microscopic analysis using the coordinate-space
g-matrix folding method (e.g., Ref. [2] and references therein), as well as works
where the real part of the optical potential (ReOP) is microscopically calculated
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(e.g., Ref. [3]) using the folding approach (e.g., Refs. [4–7]). Usually the imag-
inary part of the OP’s (ImOP) and the spin-orbit terms have been determined
phenomenologically that has led to the usage of a number of fitting parameters.
In our previous works [8,9] instead of using a phenomenological imaginary part
of OP we have performed calculations of 6He+p [8] and 8He+p [9] elastic dif-
ferential cross sections by means of the microscopic OP with the imaginary part
taken from the OP derived in [10, 11] in the frameworks of the high-energy ap-
proximation (HEA) [12–14] that is known as the Glauber theory. The present
work as well as that from Ref. [15] on 6He+12C scattering could give a novel
information on mechanism of the process due to the more complicated depen-
dence of the microscopic OP not only on the density of the projectile 6He but
also on the density of the target nucleus.

In the last years a number of works has been devoted also to the elastic scat-
tering of 6He on 12C nucleus and, particularly, to the study of the mechanism of
this process including the role of breakup channels. In the present paper we per-
form an analysis of the 6He+12C elastic scattering data at three beam energies
E = 3 [16], 38.3 [17] and 41.6 MeV/nucleon [18] using the microscopically
calculated OP. The data have been already considered individually in the frame-
works of other theoretical models. In Ref. [17] the elastic scattering data at
E = 38.3 MeV/nucleon were analyzed using the semi-microscopic OP. Its real
part was defined in a double-folding model including the direct and exchange
convolution integrals, while the imaginary part was taken phenomenologically
in the WS form. To get a better agreement at larger angles, the dynamic polar-
ization potential (DPP) in the form of a derivative of a WS function was added
to the volume OP.

Calculations by coupled reaction channel models [18, 19] with accounting
for the cluster and continuum states are encouraged to study their sensitivity
to the input information on the reaction mechanism. On the other hand, the
breakup reactions reveal themselves through the dynamic polarization terms in
the full OP for elastic scattering. The explicit information on these channels can
be obtained from the unambiguous OP obtained from the respective analysis
of the elastic scattering experimental data. In the present study (see also [15])
we start analyzing the elastic scattering data by the microscopic optical poten-
tial obtained in Ref. [10]. Its real part includes the direct and exchange terms
that are the same used in Ref. [17]. The imaginary part of OP is based on the
Glauber theory of high-energy scattering of complex systems and is an integral
which folds the nucleon-nucleon scattering amplitude fNN with the density dis-
tribution functions of the bare nucleons of colliding nuclei. Then, we assume
that additional terms to our basic OP may be considered as a consequence of the
presence of more complicated channels. In the case of the loosely bound 6He
projectile these terms are thought to arise due to the breakup channels.
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2 The Microscopic Optical Potential

Here we give the main expressions for the real and imaginary parts of the nucleus-
nucleus OP

U(r) = V DF (r) + iW (r). (1)

The real part V DF consists of the direct and exchange double-folding (DF)
integrals that include an effective NN potential and density distribution func-
tions of the colliding nuclei:

V DF (r) = V D(r) + V EX(r). (2)

The formalism of the DF potentials is described in details, e.g., in Refs. [4,
6]. In general, in Eq. (2) V D and V EX are composed from the isoscalar (IS)
and isovector (IV) contributions, but in the considered case the isovector part is
omitted because Z = N in the target nucleus 12C and, thus, one can write:

V D(r) =
∫
d3rpd

3rtρp(rp)ρt(rt)vDNN (s), (3)

V EX(r) =
∫
d3rpd

3rtρp(rp, rp + s)ρt(rt, rt − s)

× vEXNN (s) exp
[
iK(r) · s

M

]
, (4)

where s = r+rt−rp is the vector between two nucleons, one of which belongs
to the projectile and another one to the target nucleus. In Eq. (3) ρp(rp) and
ρt(rt) are the densities of the projectile and the target, respectively. In Eq. (4)
ρp(rp, rp + s) and ρt(rt, rt − s) are the density matrices for the projectile and
the target that are usually taken in an approximate form [20]. In the modern
calculations of the DF potentials the effective interaction vDNN (of CDM3Y6-
type) based on the Paris NN forces and having the form

vDNN (E, ρ, s) = g(E)F (ρ)v(s) (5)

is usually applied with the distance dependence given by

v(s) =
3∑

i=1

Ni
exp(−μis)

μis
, (6)

and with terms of the energy and density dependencies:

g(E) = 1 − 0.003E, F (ρ) = C
[
1 + αe−βρ − γρ

]
. (7)

The energy dependent factor in Eq. (7) is taken to be a linear function of the
bombarding energy per nucleon, while ρ in F (ρ) is the sum of the projectile
and target densities, ρ = ρp + ρt. The parameters Ni, μi [Eq. (6)], C, α, β, γ
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[Eq. (7)], and all details of the mathematical treatments and calculations are
given in Refs. [6, 21].

In Eq. (4) vEXNN is the exchange part of the effective NN interaction. It is
important to note that the energy dependence of V EX arises primarily from the
contribution of the exponent in the integrand of Eq. (4). Indeed, there the local
nucleus-nucleus momentum

K(r) =
{

2Mm

�2

[
E − V DF (r) − Vc(r)

]}1/2

(8)

with Ap, At, m being the projectile and target atomic numbers and the nucleon
mass, and M = ApAt/(Ap + At). As can be seen, K(r) depends on the fold-
ing potential V DF (r) that has to be calculated itself and, therefore, we have to
deal with a typical non-linear problem. Usually, two different kinds of effective
NN potentials are employed in calculations, namely the Paris CDM3Y6 and
the Reid DDM3Y1 NN interactions, which are defined by two different sets of
the aforementioned parameters. The direct parts of these potentials have differ-
ent signs and, for example, in the case of CDM3Y6 forces the V EX is negative
while V D is positive. So, if in the calculations one takes only the direct part of
V DF with the Paris M3Y NN forces, then the corresponding real part of such
OP is positive one. Therefore, one should proceed carefully when neglecting the
exchange part of OP.

Concerning the imaginary part of our OP, we take it in two forms. In the
first case the imaginary part has the same form as the real one but with different
strength. At the same time we test another shape of the imaginary part that
corresponds to the full microscopic OP derived in Refs. [10,11] within the HEA
[12, 13]. In the momentum representation this OP has the form

UH(r) = −E
k
σ̄N (i+ ᾱN )

1
(2π)3

∫
e−iqrρp(q)ρt(q)fN (q)d3q. (9)

Here σ̄N and ᾱN are the averaged over isospins of nuclei theNN total scattering
cross section and the ratio of real to imaginary parts of the forward NN ampli-
tude, both being parameterized, e.g., in Refs. [22, 23]. The NN form factor is
taken as fN (q) = exp(−q2β/2) with the slope parameter β = 0.219 fm2 [24].

Hereafter we shall use only the imaginary part of the full OP (9) transformed
(by using the equality

∫
dΩq exp (−iqr) = 4πj0(qr)) to the form

WH(r) = − 1
2π2

E

k
σ̄N

∫ ∞

0

j0(qr)ρp(q)ρt(q)fN (q)q2dq. (10)

In the further calculations the microscopic volume optical potential has the
following form:

U(r) = NRV
DF (r) + iNIW (r), (11)

whereW (r) is taken to be equal either to V DF (r) or toWH(r). The parameters
NR and NI entering Eq. (11) renormalize the strength of OP and are fitted by
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comparison with the experimental cross sections. In the present work, attempt-
ing to simulate the surface effects caused by the polarization potential [25–27],
we add to the volume potential [Eq. (11)] the respective surface terms. Usually,
they are taken as a derivative of the imaginary part of OP, as follows:

W sf (r) = −iNsf
I

dW (r)
dr

, (12)

= −iNsf
I r

dW (r)
dr

, (13)

= −iNsf
I r2

dW (r)
dr

, (14)

= −iNsf
I

dW (r − δ)
dr

, (15)

where Nsf
I is also a fitting parameter, δ gives the shift of the potential (15) and

in our case is fixed to be δ = 1 fm.

3 Results and Discussion

The results of our work [8] on the 6He+p elastic scattering showed that the
large-scale shell model (LSSM) density of 6He microscopically calculated in
Ref. [7] using a complete 4�ω shell-model space and the Woods-Saxon single-
particle wave function basis with realistic exponential asymptotic behavior is the
most preferable one and it is used also in the present work. For 12C we use the
symmetrized Fermi-type density with the radius and diffuseness parameters c =
2.275 fm and a = 0.393 fm from Ref. [28]. They were obtained by defolding
the 12C charge density distribution deduced in Ref. [29] from analysis of the
corresponding electron scattering form factors.

In Figure 1 are shown the densities of 6He and 12C, as well as the OP’s V DF

calculated using Eqs. (1)-(7) and WH obtained within the HEA [Eq. (10)] for
the three cases of the incident energy that are considered (E = 3, 38.3 and 41.6
MeV/nucleon). It can be seen that the increase of the energy leads to reduced
depths and slopes of ReOP and ImOP.

We calculated the 6He+12C elastic scattering differential cross sections using
the program DWUCK4 [30] and the microscopically calculated OP’s. In the
calculations first we use only volume OP (11) for the two types of ImOP (V DF

and WH ) and then we add different forms of the surface contributions to the
ImOP [Eqs. (12)-(15)]. The latter is done having in mind that due to the breakup
channel effects there is a “loss of the flux” from the elastic channel.

We consider the set of the Ni coefficients (NR, NI and Nsf
I ) as parameters

to be found out from the comparison with the empirical data. We should mention
(as it had been emphasized in our previous works [8, 9] for 6,8He+p scattering)
that we do not aim to find a complete agreement with the data. The introduction
of the N ’s related to the depths of the different components of the OP’s can
be considered as a way to introduce a quantitative measure of the deviations of
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Figure 1. Upper part: total, point-proton and point-neutron microscopic LSSM densities
of 6He (from Ref. [7]) (a) and the density of 12C [28, 29] (b). Lower part: microscopic
OP’s V DF (c) and WH (d) for the 6He+12C elastic scattering at E = 3, 38.3 and 41.6
MeV/nucleon (NR = NI = 1 and Nsf

I = 0).

the predictions of our method from the reality (e.g., the differences of N ’s from
unity for given energies).

The results for the energies E = 38.3 and 41.6 MeV/nucleon show that
the inclusion of different forms of the surface potential leads to almost similar
results for the cross section. This was also the case of 8He+p processes studied
in our previous work [9]. As is known, the problem of the ambiguity of the
values of N ’s arises when the fitting procedure concerns a limited number of
experimental data.

The case of E = 3 MeV/nucleon is a particular one because of this rather
low energy. Nevertheless, we made an attempt to consider it using OP obtained
in our method. The calculations showed that for this energy the fitting procedure
led to Nsf

I = 0 for the case of the surface term given by Eq. (13). We note
that in the case of E = 3 MeV/nucleon the ambiguity in the explanation of the
data [16] still remains.

In what follows, we tried to choose the most physical values of N ’s for the
energies considered. As is known, the fitting procedure belongs to the class of
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the ill-posed problems (e.g., Ref. [31]). To resolve this problem it is necessary to
impose some physical constraints when fitting the parameters of a model. In our
case it might be the data on the total cross sections but often the corresponding
values are missing. Another physical criterion that has to be imposed is the
obtained potentials to obey a determined behavior of the volume integrals [4]

JV = − 4π
ApAt

∫
NRV

DF (r)r2dr, (16)

JW = − 4π
ApAt

∫
NIW (r)r2dr, (17)

as functions of the energy. Indeed, it was shown for nucleon and light-ions scat-
tering on nuclei (see, e.g., Refs. [32–34]) that the values of the volume integrals
JV decrease with the energy increase at E < 100 MeV/nucleon, while JW in-
creases at low energies up to 10-20 MeV/nucleon and then saturates. We would
like to note that such conditions were also imposed in Ref. [9] when the mi-
croscopic OP’s were introduced to study the 8He+p scattering and their depth
parameters NR and NI were fitted. The values of JV and JW for the 6He+12C
scattering that fulfil the condition for their energy dependence are presented in
Tables 1, 2 and 3. In the cases when we include surface terms to the ImOP we
modify JW accounting for them.

Table 1. The optimal values of the parameters NR, NI for the volume OP [Eq. (11)] for
the elastic 6He+12C cross sections at energies E = 3, 38.3 and 41.6 MeV/nucleon when
the imaginary potential W was selected in the forms WH or V DF . The values of the
volume integrals JV and JW , χ2 and total reaction cross sections σR (in mb) are also
given.

E W NR NI JV JW χ2 σR

3 WH 0.826 0.154 297.109 212.952 9.121 1427.33
3 V DF 0.793 0.345 285.239 124.095 9.890 1428.52
38.3 WH 1.268 0.511 353.442 208.567 80.808 1028.77
38.3 V DF 1.123 0.472 313.025 131.565 50.847 1033.79
41.6 WH 0.897 0.689 244.933 265.680 3.737 1067.32
41.6 V DF 0.814 0.584 222.269 159.466 3.774 1067.55

Table 2. The same as Table 1 but for the parameters NR, NI , and Nsf
I of the total OP

with the surface term from Eq. (13).

E W NR NI Nsf
I JV JW χ2 σR

38.3 WH 1.000 0.023 0.082 278.740 109.172 17.399 1055.67
38.3 V DF 0.924 0.082 0.101 257.556 106.420 5.006 1174.66
41.6 WH 0.852 0.337 0.051 232.645 188.590 3.734 1070.77
41.6 V DF 0.800 0.500 0.014 218.446 147.876 3.781 1072.40
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Table 3. The same as Table 1 but for the parameters NR, NI , and Nsf
I of the total OP

with the surface term from Eq. (14). The values of Nsf
I are in fm−1.

E W NR NI Nsf
I JV JW χ2 σR

3 WH 0.790 0.074 0.002 284.160 137.506 8.912 1449.98
3 V DF 0.725 0.040 0.008 260.779 55.924 9.418 1533.22
38.3 WH 0.932 0.028 0.019 259.786 110.017 5.059 1185.22
38.3 V DF 0.932 0.204 0.012 259.786 105.469 8.425 1161.91
41.6 WH 0.797 0.255 0.011 217.627 152.281 3.711 1091.46
41.6 V DF 0.578 0.041 0.022 157.827 98.546 2.398 1224.91

Figure 2. Differential cross section of elastic 6He+12C scattering at E = 3 (a), 38.3
(b) and 41.6 MeV/nucleon (c) calculated using only volume OP [Eq. (11)]. Solid line:
W = WH , dashed line: W = V DF . The values of the fitted parameters NR and NI

corresponding to the curves in the upper, middle and lower part are given in Table 1. The
experimental data are taken from Refs. [16–18].
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Figure 3. The same as in Figure 2 (without the case forE = 3 MeV/nucleon) atE = 38.3
(a) and E = 41.6 MeV/nucleon (b) calculated using volume OP and surface contribution
to the ImOP [Eq. (13)]. The values of the parameters N ’s are given in Table 2. The
experimental data are taken from Refs. [17, 18].

In the next part of the work we select those sets of the parameters N ’s that
lead to the already mentioned behavior of JV and JW as functions of the energy
for three cases: 1) only the volume terms; 2) the volume terms plus the surface
term given by Eq. (13); 3) the volume terms plus the surface term from Eq. (14).

Using the same values of the parameters N ’s already selected, we present
in Figures 2, 3 and 4 the cross sections for the three energies and for the three
cases mentioned above. One can see that the best agreement with the data for all
the three energies can be obtained by the OP with the volume and surface term
[Eq. (14)] whose volume integrals follow (though approximately) the already
mentioned energy dependence.

In Figures 5(b) and 5(c) the real and imaginary parts of the OP for E = 3
MeV/nucleon obtained in the present work are compared with the phenomeno-
logical OP’s from Ref. [16] (where WS forms have been used for ReOP and
ImOP) and from Ref. [35] (with OP having a squared WS real part and a stan-
dard WS shape for the ImOP). The results for the cross sections are shown
in Figure 5(a). One can see much better agreement for our cross sections ob-
tained using microscopic OP’s than those obtained in a phenomenological way
in Refs. [16, 35].
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Figure 4. The same as in Figure 2 but for the volume OP and surface contribution to the
ImOP [Eq. (14)]. The corresponding N ’s are given in Table 3. The experimental data are
taken from Refs. [16–18].

We should note also that in Ref. [35] the ReOP (V0) increases and the ImOP
(W0) decreases with the energy increase which is in contradiction with the gen-
erally accepted results and with the behavior of the volume integrals as functions
of the energy [32–34].

4 Summary and Conclusions

The results of the present work can be summarized as follows:
(i) The microscopic optical potential and cross sections of 6He+12C elastic

scattering were calculated at the energies ofE = 3, 38.3 and 41.6 MeV/nucleon.

105



V. K. Lukyanov, D. N. Kadrev, E. V. Zemlyanaya et al.

1

10-2

102

104

 0  20  40  60  80  100

dσ
/d

Ω
 [m

b/
sr

]

θc.m. [deg]

E=3A MeV

(a)

-200

-100

 0

R
eU

 [M
eV

]

(b)

NR=0.430  NI=0.332  χ2=6.766  W=WH

NR=0.416  NI=0.717  χ2=7.623  W=VDF

WS (Ref.[15])  χ2=17.763
WS (Ref.[18])  χ2=115.377

-300

-200

-100

 0

 0  5  10

Im
U

 [M
eV

]

r [fm]

(c)

-10

-5

 0

 0  5  10

Figure 5. (a) Differential cross section of elastic 6He+12 C scattering at E = 3
MeV/nucleon. Solid and dotted lines show the results with microscopic ImOP WH and
V DF , respectively. The results with the phenomenological OP’s from Refs. [16] and [35]
are given by dashed and dash-dotted lines, correspondingly. The experimental data are
taken from Ref. [16]; The ReOP and ImOP for E = 3 MeV/ nucleon microscopically
obtained in the present work (as well as in [15]) and those from Refs. [16] and [35] are
given in panels (b) and (c), respectively.

Comparisons with the experimental data and results of other approaches were
presented. The direct and exchange parts of the real OP (V DF ) were calcu-
lated microscopically using the double-folding procedure and density-dependent
M3Y (of CDM3Y6-type) effective interaction based on the Paris nucleon-nucleon
potential. The imaginary parts of the OP were taken in the forms of V DF or
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WH , the latter being calculated using the high-energy approximation. The mi-
croscopic densities of protons and neutrons in 6He calculated within the large-
scale shell model were used. The nucleon density distribution functions of 12C
were taken as defolded charged densities obtained from the best fit to the exper-
imental form factors from electron elastic scattering on 12C. In this way, in con-
trast to the phenomenological and semi-microscopic models we deal with fully
microscopic approach as a physical ground to account for the single-particle
structure of the colliding nuclei. The elastic scattering differential cross sections
were calculated using the program DWUCK4.

(ii) While at low energies the volume OP’s can reproduce sufficiently well
the experimental data, at higher energies additional surface terms in OP having a
form of a derivative of the imaginary part of the OP became necessary and were
used in the present work.

(iii) The depths of the real and imaginary parts of the microscopic OP’s are
considered as fitting parameters. As is expected when one utilizes the fitting
procedure in the case of a limited number of experimental data, the problem
of the ambiguity of these parameters arises. To overcome (at least partly) this
ambiguity, additional physical constraints should be imposed. Doing so, we
require in our work the values of the depth’s parameters N ’s to lead to volume
integrals JV and JW with realistic energy dependence for energies 0 < E <
100 MeV/nucleon. Namely, JV ’s must decrease while JW ’s increase to some
constant values with the increase of the energy.

(iv) The comparison of our results with those of some phenomenological
approaches pointed out the advantages of using microscopic real and imagi-
nary parts of the optical potential imposing realistic physical constraints on their
depths as that one of the behavior of the volume integrals as functions of the
energy.

(v) As in works of other authors (e.g., Ref. [5]) we consider in more details
the behavior of the OP in the nuclear periphery. This gives a possibility to make
some conclusions about the contributions of the dynamical polarization terms of
the OP or, in other words, about the coupled-channel effects.
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