
NUCLEAR THEORY, Vol. 29 (2010)
eds. A. Georgieva, N. Minkov, Heron Press, Sofia

Estimation of the Breakup Cross Sections in
6He+12C Reaction within High-Energy
Approximation and Microscopic Optical
Potential

E.V. Zemlyanaya, V.K. Lukyanov, K.V. Lukyanov

Joint Institute for Nuclear Research, Dubna 141980, Russia

Abstract. The breakup cross sections in the reaction 6He+12C are calculated
at about 40 MeV/nucleon using the high-energy approximation (HEA) and with
the help of microscopic optical potentials (OP) of interaction with the target
nucleus 12C of the projectile nucleus fragments 4He and 2n. Considering the
di-neutron h=2n as a single particle the relative motion hα wave function is es-
timated so that to explain both the separation energy of h in 6He and the rms ra-
dius of the latter. The stripping and absorbtion total cross sections are calculated
and their sum is compared with the total reaction cross section obtained within a
double-folding microscopic OP for the 6He+12C scattering. It is concluded that
the breakup cross sections contribute in about 50% of the total reaction cross
section.

Introduction

In recent calculations [1], the data on elastic scattering of 6He on 12C at com-
parably large energies 38.3 and 41.6 MeV/nucleon [2, 3] were studied using the
microscopic optical potentials (OP) [4], whose depths of real and imaginary
parts as well as the strength of the surface term were corrected by the three fitted
re-normalization coefficients NR, NI and NsfI . It was shown that because of the
limited set of experimental data the ill-posed problem reveals itself, and there-
fore not one but the number of sets of adjusted N’s (and the respective OP’s)
were obtained, each characterized by fairly small χ2 value. In this connection,
the study of physics of the process is desirable, namely the search of details of
mechanism of the 6He+12C interaction in different channels. At this stage we
intend to study constituents of a total reaction cross section σR , the breakup σb
and absorption σa cross section, and compare them with σR obtained with the
help of the aforementioned OP’s in elastic channel.

1 The Model of 6He

We consider the simplest breakup hα-model of 6He, where it is suggested con-
sisting of two clusters 4He and h, the correlated pair of neutrons h = 2n (the
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Figure 1. Comparison of the hα-model density distribution �b(s) (solid) with the LSSM
density [5] (dashed).

similar model was also treated in [3]). The interaction between clusters is taken
to be a WS potential with the adjusted geometrical parameters R = 1.45 fm,
a = 0.3 fm and the depth V0 = 28.3 MeV that reproduces the separation en-
ergy ε = 0.975 MeV of h and yields the rrms radius 2.62 fm of 6He. The
obtained s-wave function ϕb(s) of relative motion of clusters defines the density
distribution

�b(s) = |ϕb(s)|2 = (1/4π)|ϕl=0(s)|2 (1)

and will be used for the further calculations of the ground state matrix ele-
ments of breakup processes. Figure 1 exhibits that �b(r), normalized to 1, co-
incides fairly well with �L(s), the nucleon density distribution of 6He obtained
within the known large-scale shell-model [5] (LSSM-model) which also gives
rrms = 2.586 fm. Thus, we may apply the 2-cluster hα-model for the further
calculations of elastic and breakup cross sections.

2 Folding Potentials

In the framework of the hα-model of 6He one can estimate the 6He+12C OP as
folding of two OP’s of interaction of clusters α and h with 12C:
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U
(b)
HeC(r) = V DF (b) + iW (b)

=
∫
d3s �b(s)

{
Uα
(
r − (2/3)s

)
+ Uh

(
r + (1/3)s

)}

= 2π

∞∫

0

�b(s)s2ds

1∫

−1

dx

{
Uα

(√
r2 + (1/9)s2 − r(2/3)sx

)

+ Uh

(√
r2 + (4/9)s2 + r(4/3)sx

)}
. (2)

Here the h-12C potential is taken as the twice neutron-12C OP Uh = 2Un. In
turn, potentials Uα and Un are calculated within the microscopic hybrid model
of OP [4]. In the latter, the double-folding (DF) real part V DF is constructed as
is done in [6, 7], while the imaginary part is derived using the optical limit of a
Glauber theory. So, the real and imaginary parts of OP are as follows:

V DF(r) = V D(r) + V EX(r) =
∫
d3spd

3st

{
�p(sp) �t(st) vD

NN (s)

+
∫
d3spd

3st�p(sp, sp + s)�t(st, st − s)vEX
NN (s) exp

[
iK(r) · s

M

]}
, (3)

WH(r) = − 1
2π2

E

k
σ̄N

∫ ∞

0

j0(qr)�p(q)�t(q)fN (q)q2dq. (4)

Here p and t are related to the projectile and target nucleus, s = r + st − sp,
M = ApAt/(Ap +At), K(r) is the local nucleus-nucleus momentum, and σ̄N ,
the total NN cross section, averaged over the isospins of colliding nuclei. The
current calculations apply the vNN effective Paris nucleon-nucleon CDM3Y6
potentials (for details see in [6, 7]). As to the density distributions we use the
two-parameter symmetrized fermi-densities �p and �t for nuclei 4He and 12C
from [8]. Thus, Uα and Uh = 2Un OP’s have the form

Ui(r) = V DF
i (r) + iWi(r), i = α, h, (5)

where W (r) is either WH(r) or V DF(r). Substituting OP’s of fragments (5) in
eq. (2), the respective real V DF (b) and imaginary W (b) parts of OP for 6He+12C
scattering are taken as results of folding with the hα-model wave function.
These parts are applied to construct the whole 6He+12C OP as follows

U
opt (b)
HeC = NRV

DF (b)(r) + iNIW
(b)(r), (6)

where the coefficientsNR andNI are adjusted to get agreement with the respec-
tive experimental data on elastic scattering differential cross sections.
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3 Elastic Scattering

Doing so, we apply U
opt (b)
HeC (r) (6) to consider elastic scattering of 6He from

12C at E = 38.3 MeV/nucleon. In this case, there were applied two kinds of
OP, with imaginary parts W = WH (b) and W = V DF (b), and the corresponding
differential cross sections were numerically calculated using the code DWUCK4
[9]. Besides, we compare these results with cross sections given in [1] where
the entire double-folding OP (3) was utilized accounting for the LSSM density
for 6He [5], and for the 12C density from [8]. Comparisons were made with
the experimental data from [2]. The fitted re-normalization coefficients N’s are
shown in Table 1. One can see from Figure 2 that angular distributions for
different kinds of ImOP in the hα-model (solid and dashed curves) as well as in
the entire DF-model (dash-dotted and dotted curves) are closely displayed, and
the corresponding total reaction cross sections are almost equal in value as seen
from Table 1. Also, Figure 3 shows the resulting 6He+12C optical potentials, that
correspond to the case of selection of the HEA ImOP (4) used in the hα-model
and in the entire DF-model. One sees that the ImOP for both models are rather
similar. Nevertheless, we note that the sharper slope in the periphery of the hα-
model OP’s leads to the pronounced angular distributions as compared to those
calculated within the smooth DF-potential based on the 6He LSSM density. As
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Figure 2. The 6He+12C differential elastic cross sections at 38.3 MeV/N calculated
using �b density of the hα-model for folding OP (eqs. (2),(6)): solid curve – for
W (b) = WH (b), dashed – for W (b) = V DF (b). Dash-dotted and dotted curves are
the entire double-folding calculations from [1] with the LSSM nucleon density of 6He
and with W = V DF and W = WH, respectively (eqs. (3),(4)). The re-normalization N’s
coefficients are in Table 1. Experimental data from [2].
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Table 1. The adjusted {N} coefficients of OP and the DWUCK calculations within hα-
and DF-models for elastic cross sections in Figure 2.

Potential NR NI σtot
R , mb

hα-model, NRV
DF(b) + iNIW

H(b) solid, eq. (6) 2.0 1.7 1018
hα-model, NRV

DF(b) + iNIV
DF(b) dashed, eq. (6) 2.1 1.0 1042

entire DF-model, NRV
DF + iNIW

H dots, ref. [1] 1.268 0.511 1029
entire DF-model, NRV

DF + iNIV
DF dash-dot, ref. [1] 1.123 0.472 1034
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Figure 3. The hα-model potential for 6He+12C elastic scattering at E =
38.3 MeV/nucleon (solid) in comparison with the entire DF microscopic OP’s applied
in [1] (dashed). Left panel: real part; right panel: imaginary part.

a whole the hα-model of 6He seems to be reliable for the further evaluations of
total breakup cross sections, that is the subject of our study in the paper.

4 Testing the HEA(eikonal) Method

For calculations of breakup cross sections, the analytic eikonal (HEA) method is
utilized. As to our further applications of HEA approach at energies of about 40
MeV/nucleon we should preliminary verify that this method is well working. For
this purpose we calculate the notably characteristic of a process, the differential
cross section of the 6He+12C elastic scattering at 38.3 MeV/nucleon, within the
numerical code DWUCK4 and also using the HEA method. In both cases we ap-
ply the same microscopic double-folding OP Uopt = (1.123 + i0.472)V DF (r)
from [1]. For this OP the exact result for the angular distribution was already
shown in Figure 2 by the dashed-dotted curve. As to the analogical eikonal
calculations we first exhibit the explicit expression for the HEA amplitude of
scattering (for details see ref. [10])

f(q) = fpc(q) + ik

∫ ∞

0

db bJ0(qb) e−iΦpc
(
1 − eiΦN + iδΦuc

)
, (7)
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Figure 4. Differential cross sections of the 6He+12C elastic scattering at E =
38.3 MeV/nucleon obtained for Uopt = (1.123 + i0.472)V DF from [1] using eikonal
method (solid curve) and the DWUCK4 code (dashed curves).

where q = 2k sin(ϑ/2) is the transfer momentum, fpc(q), the known amplitude
of scattering in the field of the Coulomb potential Upc = Z1Z2e

2/r. Then,
δΦuc = Φuc − Φpc is the difference of eikonal phases for the potential of a
uniformly charged sphere and the Upc potential, while the nuclear eikonal phase
is

ΦN = − k

E

∞∫

0

UoptHeC

(√
b2 + z2

)
dz. (8)

Note that when performing integration in (7) the trajectory distortion is taken
into account by exchanging the impact parameter b by the distance of closest
approach in the Coulomb field Upc at b=0, i.e. b → bc = ā +

√
ā2 + b2 with

ā = ZpZte
2/2Ec.m..

In Figure 4 is shown the comparison of two curves for dσ/dσR where dσR
is the Rutherford cross section for scattering in the Upc potential. The solid
curve corresponds to the HEA method, and the dashed one is the exact DWUCK
calculations. One can see that both curves coincide fairly well, especially at
small angles, in the region that yields the main contribution to the total cross
sections. Thus we conclude that the HEA method may be applied for our further
estimations of the total breakup cross sections.
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5 The HEA Model for Breakup Reactions

The earlier HEA theory for the breakup processes were developed in refs. [11,
12] for investigations of stripping and dissociation of deuterons in nuclear col-
lisions. In recent papers (see, e.g., [13, 14] and refs therein) this method was
generalized to study breakup reactions of lightest nuclei. For a brief review of
this method we begin with the conditions E � |U |, ϑ � (1/kR)1/2 when
the OP wave function of a high-energy particle can be considered in the eikonal
form:

Ψ(r) = e
ikr − i

�v

∫ z

−∞
dz Uopt

(√
b2 + z2

)

, (9)

After scattering at z→ +∞ this function becomes

Ψ(r) = S(b) · eikr, S(b) = e
− i

�v

∫ ∞

−∞
dz Uopt

(√
b2 + z2

)

, (10)

where S(b) is an analog of the partial Sl-matrix, and formulae defined by Sl may
be transformed to respective expressions with S(b) using relations l+1/2 → kb
and (1/k)

∑
l →

∫
db. So, after the collision the probability that the particle

with an impact parameter b remains in the elastic channel is

|Si(b)|2 = e
− 2

�v

∫ ∞

0

dzWi

(√
b2 + z2

)

, i = α, h, (11)

and the probability for the particle to be removed from the elastic channel is
(1 − |S|2). Here we denote W = |ImU |. Thus, the common probability of
both h and α particles to leave the elastic channel is (1 − |Sh|2)(1 − |Sα|2).
Then, one should average this latter by �b(s) that characterizes the probability
of h and α to be at relative distance s. As a result, for the hα-model of 6He the
total absorbtion cross section is obtained as follows

σtotabs = 2π
∫ ∞

0

bhdbh
(
1 − |Sh(bh)|2

)
(1 − I(bh)) , (12)

where

I(bh)=
∫
d3s�b(s)|Sα(bα)|2, bα=

√
s2 sin2 ϑ+b2h − 2sbh sinϑ cosφ . (13)

Here the relation is used of impact parameters bα = bh − b with b = s sinϑ
being the projection of the h − α vector s on the plane normal to the 0z-axis
along the straight line trajectory of an incident nucleus.

In the case of the stripping reaction with removing h-particle from 6He to
the target nucleus, one should use the probability of h to leave the elastic chan-
nel (1 − |Sh(bh)|2), and for α to continue its elastic scattering with probabil-
ity |Sα(bα)|2. Then the probability of the whole process is |Sα(bα)|2 · (1 −
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Table 2. The HEA estimations within the hα-model of total cross sections of 6He+12C
at E = 38.3 MeV/nucleon.

Potential σtot
abs, mb σtot

bu , mb σtot
R , mb

ImOP=NIWH(b), eq.(4), NI=1.7 392 412 804
ImOP=NIVDF(b), eq.(3), NI=1.0 447 389 830

|Sh(bh)|2), and to get the total stripping cross section one must average over
�b(s) as is done in (12),(13). In a similar manner the transfer of the α particle
can be constructed, and the net contribution of both removal reactions yields the
total breakup cross section

σtotbu = 2π
∫ ∞

0

bhdbh

{
|Sh(bh)|2 +

[
1 − 2|Sh(bh)|2

] · I(bh)
}
. (14)

The sum of the absorption (12) and breakup (14) cross sections results in the
total reaction cross section

σtotR = 2π
∫ ∞

0

bhdbh

(
1 − |Sh(bh)|2 · I(bh)

)
(15)

6 Summary and Conclusions

Estimations of the total cross sections were made with a help of the prelimi-
nary calculated imaginary parts of optical potentials Uh and Uα for scattering
of h- and α-particles on 12C. Firstly, we treated them as the NIWH

h,α potential
done by eq.(4) of HEA, and also, in the other attempt, they were taken in the
double-folding form NIV

DF eq. (3) usually used for the real potentials. The re-
normalization coefficients {Na} are the same as they were fitted for the folded
potentials (2) of the hα model (Table 1, rows 2,3). Thereafter the respective
probabilities of scattering |Sh,α|2 (11) were obtained and applied in calculations
of the respective cross sections (12),(14),(15) shown in Table 2. One can see
that in this case the total reaction cross sections σtotR = 804, 830mb turn out to
be about 20% lower than those σtotR = 1018, 1042 mb obtained within the code

DWUCK for the U (b)
HeC optical potential, the result of folding the Uh and Uα po-

tentials with the hα-density function �b(s). This 20% difference seems not too
large, but to get the more substantial conclusion one should make comparisons
of the results for folded OP’s calculated not within the code DWUCK but using
the HEA expression for the total reaction cross section [11]

σtotR = 2π
∫ ∞

0

bdb

{
1 − exp

[
− 2

�v

∫ ∞

−∞
dzW

(√
b2 + z2

)]}
. (16)

One should underline that here it is involved only the imaginary parts of the HEA
U

(b)
HeC optical potential, in our case they are W = 1.7WH and W = 1.0WH(b).
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So, using (16) we got the respective reaction cross sections σtotR = 952 and 965
mb. Thus, the difference of these results from the preceding HEA results σtotR
= 804 and 830 mb is only about 10%. The small rest discrepancy can arise
due to the additional role of the real part of OP in the DWUCK calculations,
while the HEA expression (16) depends only on the imaginary part of OP. The
other effect is ought to the difference in formulae (15) and (16). Indeed, in the
first one the density �b folds in eq.(13) probability function |Sh,α|2 having the
bare potential W in the exponent. Otherwise, the cross section (16) contains the
already folded potential in its exponent. By the way these effects occur to be not
too significant, and one can conclude that the main mechanism of the absorbtion
in elastic channel of the 6He+12C scattering is ought to existence of the power
dissociation channels of the 6He in two clusters h = 2n and α.
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