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Abstract. The two-fluid Interacting Vector Boson Model (IVBM) with the
U(6) as a dynamical group possesses a rich algebraic structure of physical inter-
esting subgroups that define its distinct exactly solvable dynamical limits. The
classical images corresponding to different dynamical symmetries are obtained
by means of the coherent state method. The phase structure of the IVBM is in-
vestigated and the following basic phase shapes, connected to a specific geomet-
ric configurations of the ground state, are determined: spherical, U(3) ⊗ U(3),
γ−unstable, O(6), axially symmetric deformed, SU+(3), and deformed triax-
ial, SU−(3). The obtained phase diagram of the IVBM resembles that of IBM-2
and reveals the common physical content that relates the two algebraic models.

1 Introduction

The phase structure of quantum many-body systems has been a subject of great
experimental and theoretical interest in the last years. The introduction of the
concept of critical point symmetry [1] has recalled the attention of the commu-
nity to the topic of quantum phase transitions in nuclei. Different models have
been used to describe the quantum phase transitions in different many-body sys-
tems, such as atomic nuclei [2], molecules [3, 4], atomic clusters [5], and finite
polymers. Among these models, those based upon algebraic Hamiltonians play
an important role.

There are many approaches which allow the association of a certain geom-
etry to any abstract algebra, but for algebraic models, this can be achieved with
the theory of the coherent states [6–9]. The expectation value of the Hamiltonian
in the ground coherent state is refereed to as its classical limit. The method of
coherent (or intrinsic) states provides a prescription for translating algebraic op-
erators into canonical phase-space coordinates, thereby allowing algebraic mod-
els of nuclear structure and dynamics to be interpreted from the perspective of
their corresponding classical limits. Of particular relevance for the present study
is the construction of the potential energy or potential functions [2, 3].

A nice feature of the algebraic models is the occurrence of phases connected
to a specific geometric configurations of the ground state, which arise from the
occurrence of different dynamical symmetries. The study of the ground state

119



H. G. Ganev

energy as a function of an appropriately chosen parameter, called control param-
eter, shows a transition between the different phases. These phase transitions are
referred to as ground-state or quantum phase transitions and have been widely
investigated in the last years (e.g., a review article [10]). Since these transitions
are between different shapes, they are sometimes termed as “shape transitions”.

An important aspect of the study of phase transitions is the construction of
the phase diagram (structure). In this respect it is interesting to see what is the
phase structure of the two-fluid Interacting Vector Boson Model (IVBM). Thus,
it is the purpose of the present paper to investigate what are the different phase
shapes which might occur within the framework of the IVBM. The first step in
the construction of the phase diagram is the identification of all possible dynami-
cal symmetries of the system. In IVBM there are several dynamical symmetries
which will be considered in next sections. It should be shown that there exist
four distinct shapes corresponding to the four dynamical symmetries of IVBM:
(1) spherical shape, U(3) ⊗ U(3), (2) γ−unstable shape, O(6), (3) axi-
ally deformed shape, SU+(3), and (4) triaxial shape, SU−(3), which closely
resemble the phase structure obtained in the proton-neutron Interacting Boson
Model (IBM) (referred also to as IBM-2). An important feature offered by the
IBM-2, which is obtained also within the present framework, is the possibility to
get triaxial shapes [10–13] besides the axially symmetric ones. This gives rise to
the Dieperink tetrahedron [11], which has an extra dimension compared to the
Casten triangle [14], and to a new, triaxial shape phase of the model. The lat-
ter can not be obtained in the standard IBM-1 with quadratic terms. One needs
cubic or higher order terms.

2 The algebraic structure generated by the two vector bosons

The algebraic structure of IVBM [15,16] is realized in terms of creation and an-
nihilation operators of two kinds of vector bosons u†m(α), um(α) (m = 0,±1),
which differ in an additional quantum number α = ±1/2 (or α = p and n)−the
projection of the T−spin (an analogue to the F−spin of IBM-2). The num-
ber preserving bilinear products of the creation and annihilation operators of
the two vector bosons generate the boson representations of the unitary group
U(6) [15, 16]:

ALM (α, β) =
∑

k,m
CLM1k1mu

†
k(α)um(β), (1)

where CLM1k1m, which are the usual Clebsch-Gordan coefficients for L = 0, 1, 2
and M = −L,−L + 1, ...L, define the transformation properties of (1) under
rotations. We will use also the notations u†m(α = 1/2) = p†m and u†m(α =
−1/2) = n†m.

In the most general case the two-body model Hamiltonian should be ex-
pressed in terms of the generators of the group U(6). In some special cases the
Hamiltonian can be written in terms of the generators of different subgroups of
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U(6). The U(6) group contains the following chains of subgroups [15, 16]:

↙
Up(3) ⊗ Un(3)

↓
SOp(3) ⊗ SOn(3)

U(6)
↓

O±(6)
↙ ↓
SU±(3) ⊗O(2)

↘
U(3) ⊗ UT (2)

↓
SU(3) ⊗ SOT (2)

↘ ↓
SO(3) ↙

(2)
As can be seen, the IVBM has a rich enough algebraic structure of sub-

groups. Each of these dynamical symmetries will correspond to a certain possi-
bly different shape phase.

2.1 The U(3) ⊗ U(3) Chain

(a) U(3) ⊗ U(3) algebra. It consists of two sets of commuting operators:

Np =
√

3(p† × p)(0), LpM =
√

2(p† × p)(1)M , QpM =
√

2(p† × p)(2)M (3)

and

Nn =
√

3(n† × n)(0), LnM =
√

2(n† × n)(1)M , QnM =
√

2(n† × n)(2)M . (4)

The SUτ (3) (τ = p, n) algebra is obtained by excluding the number operator
Nτ , whereas the angular momentum algebra SOτ (3) is generated by the gen-
erator LτM only. The linear Casimir operators are simply C1[Up(3)] = Np and
C1[Un(3)] = Nn.

(b) O(3)⊗O(3) algebra. This algebra is determined by the operators LpM
and LnM .

2.2 The SU(3) ⊗ U(2) Chain

The SU(3) ⊗ U(2) algebra also consists of two commuting sets of operators:
(a) U(2) algebra. It is defined by the operator of a number of particles

N = Np +Nn (5)

and the “T-spin” operators T 1
m, (m = 0,±1) introduced through

T1 =
√

3
2A

0(p, n), T−1 = −
√

3
2A

0(n, p) (6)

T0 = −
√

3
2

[
A0(p, p) −A0(n, n)

]
. (7)

The above operators T 1
m(m = 0,±1) commute with N . Thus (6) and (7) define

the subalgebra su(2) ⊂ u(2). These operators play an important role in the
consideration of the nuclear system as composed by two interacting (proton and
neutron) subsystems.

121



H. G. Ganev

(b) U(3) algebra. It consists of the operators which are a sum of the p−
and n−boson subsystem operators: the total number of bosons N (5), the angu-
lar momentum operator LM = LpM+LnM and the components of the “truncated”
(or Elliott’s) quadrupole operator Q̃M = QpM+QnM . The operatorsLM and Q̃M
commute with N and define the subalgebra su(3) ⊂ u(3). The second-order
Casimir operator of U(3) isC2[U(3)] = 1

6 Q̃
2+ 1

2L
2+ 1

3N
2 = 1

2N
2+2T 2+N ,

where Q̃2 = 6
∑
M,α,β(−1)MA2

M (α, α)A2
M (β, β). The SU(3) Casimir is sim-

ply
K3 = 1

6 Q̃
2 + 1

2L
2. (8)

2.3 The O±(6) Chain

(a) O(6) algebra. The O+(6) algebra is spanned by the following operators:

A1
M (p, p) ≡ LpM , A

1
M (n, n) ≡ LnM , G

(+)
ij = p†inj + n†ipj . (9)

An alternative O−(6) algebra can be defined with the generators

G
(−)
ij = i(p†inj − n†ipj) (10)

instead of G(+)
ij . Both the O+(6) and O−(6) algebras have the same eigen-

spectrum but differ through phases in the wave functions. They are related by a
transformation that is a special case of a wider class of transformations known
as inner automorphisms. It is known that representation theory does provide all
of the embeddings, but it does not provide all of the dynamical symmetries [17].
Indeed, the inner automorphisms can provide new dynamical symmetry limits,
sometimes referred as to “hidden” [17] or “parameter” symmetries [18].

(b) SU(3) algebra. There are two distinct SU±(3) algebras which are
generated by a part of the O(6) operators, namely by

X
(+)
M = A2

M (p, n) +A2
M (n, p), (11)

X
(−)
M = i

[
A2
M (p, n) −A2

M (n, p)
]
, (12)

and YM = −(LpM + LnM )/
√

2. Its second-order Casimir operator is

G3 =
∑

M

(−1)M (X(±)
M X

(±)
−M + YMY−M ) . (13)

It will be shown in the next sections that the SU−(3) algebra provides a new
physically distinct dynamical symmetry limit of IVBM, which connect the latter
with the IBM-2.

3 The Boson Condensate

Usually, the condensate coherent state is defined in terms of the ’condensate
boson’ creation operator, which is a general linear combination [10, 19]

B ≡ α1b1 + α2b2 + . . .+ αMbM , (14)
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where in general the coefficients αi are complex. Then the (unnormalized) con-
densate coherent state is [10, 19]

| N ;α1, . . . , αM 〉 ∝ (B†)N | 0 〉

=

[
∑

k

αkb
†
k

]N
| 0 〉, (15)

where | 0 〉 is the boson vacuum. The expectation value of a one-body or two-
body operator with respect to the condensate (15) can be deduced using argu-
ments based upon formal differentiation [19].

Alternatively, one may use the Glauber coherent states [20]

| d1, . . . , dM 〉 ∝ exp

[
∑

k

dkb
†
k

]
| 0 〉, (16)

which do not have a fixed N . Note that the expectation value of the number of
bosons N =

∑
k b

†
kbk between (15) is

〈N ;α|N |N ;α〉
〈N ;α|N ;α〉 = N

∑

k

|αk|2. (17)

while with respect to (16) is

〈d|N |d〉
〈d|d〉 =

∑

k

|dk|2. (18)

Thus it is obvious that both Glauber and condensate states yield the same results
if taking αk ∝ 〈N〉−1/2dk.

Using the fact that the components of the two vector bosons (pk and nk,
respectively) form a six-dimensional vector, the (unnormalized) CS for IVBM
become

| N ; ξ, ζ 〉 ∝
[
∑

k

(ξkp
†
k + ζkn

†
k)

]N
| 0 〉, (19)

where ξk and ζk are the components of three-dimensional complex vectors. For
static problems these variables can be chosen real. The expression (19) defines
the so called projective realization of the CS for the fully symmetric representa-
tion [N ]6 of SU(6). We want to point out that in contrast to the definition of the
CS for IBM-2 [11–13], where the numbers of protons, Nπ , and neutrons, Nν ,
are separately conserved, here only the total number of the two vector bosons
N = Np + Nn is a good quantum number. The parameters ξk and ζk will
determine the deformation of the nucleus in the equilibrium state.
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4 Geometry

The standard approach to obtain the geometry of the system is to express the
collective variables {ξk, ζk} in the intrinsic (body-fixed) frame of reference. A
convenient parametrization is

ξ0 = r1 cos(χ) (20)

ξ±1 = ∓ 1√
2
r1 sin(χ)e∓iφ (21)

∑

k

|ξk|2 = r21, (22)

and

ζ0 = r2 cos(θ) (23)

ζ±1 = ∓ 1√
2
r2 sin(θ)e∓iϕ (24)

∑

k

|ζk|2 = r22 (25)

with

r1, r2 > 0 (26)

0 ≤ θ, χ ≤ π (27)

0 ≤ ϕ, ω ≤ 2π. (28)

A rotation can orient any one of the vectors ξ and ζ along the quantization axes,
but the relative orientations of different vectors are relevant dynamic variables.
The most general condensate may be rotated so that ξ is along the z axis, while
ζ has polar angles (θ, ϕ). The angle ϕ depends on the (arbitrary) choice of the
direction of the x axis, and the condensate can always be rotated so that ϕ = 0.
Thus, in this choice θ plays the role of relative angle between the vectors ξ and
ζ, and hence ξ · ζ =r1r2cosθ. Then, the two vectors in spherical coordinates
become ξ = (r1, χ = 0, φ = 0) and ζ = (r2, θ, ϕ = 0). The condensate in the
intrinsic frame takes the form

| N ; r1, r2, θ 〉 =
1√
N !

(B†)N | 0 〉 (29)

with

B† =
1√

r21 + r22
[r1p

†
0 + r2 cos θn†

0 + r2 sin θ
1√
2
(−n†1 + n†−1)]. (30)

The geometric properties of the ground states of nuclei within the framework of
the IVBM can then be studied by considering the energy functional

E(N ; r1, r2, θ) =
〈N ; r1, r2, θ|H|N ; r1r2, θ〉
〈N ; r1, r2, θ|N ; r1, r2, θ〉 . (31)
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The latter, as can be seen, depends on three geometric parameters: the lengths of
the two vectors (dipole deformations) r1 and r2 and on the angle θ between them
(or equivalently on the three rotational invariants r21 , r22 and r1 ·r2). By minimiz-
ing E(N ; r1, r2, θ) (31) with respect to r1, r2, and θ , ∂E/∂r1 = ∂E/∂r2 =
∂E/∂θ = 0, one can find the equilibrium “shape” corresponding to any boson
Hamiltonian, H . This shape is in many cases rigid. However, there are many
situations in which the system is rather floppy and undergoes a phase transition
between two different shapes.

5 Classical Limit of Different Dynamical Symmetries of IVBM

5.1 The U(3) ⊗ U(3) Limit

We consider the Hamiltonian that is linear combination of first order Casimirs
of Uτ (3):

HI = εpNp + εnNn. (32)

The Hamiltonian (32) can be rewritten in the form

HI = εpN + εNn, (33)

where ε = εn − εp. The first term in (33) can be dropped since it does not con-
tribute to the energy surface. Thus, the Hamiltonian determining the properties
of the system in the U(3) ⊗ U(3) limit is just

HI = εNn. (34)

The expectation value of (34) with respect to (29) gives the energy surface

〈N ; r1, r2|HI |N ; r1, r2〉
〈N ; r1, r2|N ; r1, r2〉 = ε

Nr22
r21 + r22

. (35)

We see that the energy surface depends on the two parameters r1 and r2 and is
θ−independent. In order to simplify the analysis we introduce a new dynamical
variable ρ = r2/r1 as a measure of “deformation”, which together with the
parameter θ determine the corresponding “shape”. Thus, the expression (35)
becomes

E(N ; ρ) = ε
Nρ2

1 + ρ2
, (36)

which has a minimum at ρ0 = 0. It corresponds to a spherical shape (vibrational
limit). The scaled energy ε(ρ) = E(N ; ρ)/εN in the U(3)⊗U(3) limit is given
in Figure 1. The inclusion of higher-order terms in Np and Nn will give rise to
an anharmonicity.
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Figure 1. The scaled energy surface ε(ρ) in the U(3) ⊗ U(3) limit.

5.2 The O(6) Limit

The Hamiltonian describing the O(6) (or γ−unstable) properties can be written
down through theO(6) pairing operator P † = 1

2 (p† ·p†−n† ·n†) in the following
form

HII =
4k′

N − 1
P †P. (37)

Taking the expectation value of (37) one obtains the energy surface

E(N ; ρ) = k′N
[
1 − ρ2

1 + ρ2

]2

, (38)

which does not depend on θ (θ−unstable) and has a minimum at ρ0 �= 0 (ρ0 =
±1). It corresponds to a deformed “γ−unstable” (in IBM terms) rotor. As it
was mentioned, there are two O±(6) algebras that are isomorphic and have the
same eigenspectrum but differ through phases in the wave functions resulting
into different energy surfaces. The energy surface (38) corresponds to theO−(6)
limit. The other,O+(6), limit is not physically important since its energy surface
is just a constant. The scaled energy surface ε(ρ) in the O−(6) limit is given in
Figure 2.

5.3 The SU±(3) Limit

In this case we study the Hamiltonian

HIII = − k

2(N − 1)
G3, (39)
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Figure 2. The scaled energy surface ε(ρ) in the O(6) limit.

where G3 is given by (13). Note that the quadrupole operators Xω (ω = ±1)
entering in G3 generate the two distinct algebras SU+(3) and SU−(3), respec-
tively. The energy surface corresponding to the Hamiltonian (39), within to an
unimportant constant, is

E(N ; ρ, θ) = −kN
[
(±)

ρ2(cos2(θ) ± 1)
(1 + ρ2)2

]
, (40)

where the upper (lower) sign corresponds to the SU+(3) (SU−(3)) algebra. We
plot the scaled energy surfaces corresponding to the two limits under consid-
eration in Figures 3 and 4, respectively. From the figures one can see that for
both cases the global minimum occurs at ρ0 �= 0 (|ρ0| = 1) and θ0 = 00 or
θ0 = 900 corresponding to the aligned or perpendicular configurations of the
two distinct subsystems. This allows us to interpret the SU−(3) configuration
as a triaxial one giving rise to the triaxial shape phase. The fact that the defor-
mation parameter |ρ| = 1 means that we have equal deformations of the p− and

n−boson subsystems which ratio is given by ρ2 = r22
r21

= Nn

Np
. Similarly, the

equilibrium configurations of the deformed structures in IBM-2 are obtained for
βπ = βν [11–13]. Analogously, the energy surface of SU+(3) (|ρ| = 1 and
θ = 00) is interpreted as corresponding to an axially symmetric deformed phase
shape. In this regard, the two phase shapes obtained in this subsection closely
resemble the ones corresponding to the SU∗(3) and SU(3) of IBM-2 [10–13].
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Figure 3. The scaled energy surface ε(ρ, θ) in the SU+(3) limit.

Figure 4. The scaled energy surface ε(ρ, θ) in the SU−(3) limit.

5.4 The SU(3) ⊗ U(2) Limit

This limit can be studied through the Hamiltonian

HIV = − k

(N − 1)
K3, (41)
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where the second order Casimir operator K3 of SU(3) is given by (8). The
expectation value of (41) with respect to (31) gives the following energy surface

E(N ; ρ, θ) = −kN
[
(1 + 2ρ2 cos2(θ) + ρ4)

(1 + ρ2)2

]
. (42)

For positive values of the parameter k > 0 one obtains an oscillator in the rel-
ative angle θ, which has the equilibrium at θ0 = 0. To show this one needs
to consider a more general semi-classical analysis of the classical limit of H in
which the complex coherent state parameters are used.

For negative values of the parameter k < 0, the energy surface in the SU(3)⊗
U(2) limit is similar to that of SU−(3) (Figure 4) and hence it also gives rise to
a triaxial deformed shape. Indeed, the minimization of the energy surface (42)
with respect to θ gives for the equilibrium state the values θ0 = 00 and 900,
respectively. As one can see, for θ0 = 00 the energy surface is just a constant.
At θ0 = 900, the minimum of the energy surface with respect to ρ is obtained
for |ρ0| = 1.

6 The Generalized IVBM Hamiltonian and Its Phase Diagram

All physically interesting Hamiltonians can be combined into a single Hamilto-
nian of the form:

H = ηNn − (1 − η)
N − 1

[
gG3(ω) − (1 − g)P †P

]
, (43)

where the explicit dependence of G3 from ω is shown. We have three control
parameters: η, g, ω (as much as in IBM-2) resulting in a three dimensional phase
diagram. Thus, the shape phase diagram corresponding to the IVBM Hamilto-
nian (43) can be represented by a pyramid as shown in Figure 5 with each corner
denoting a dynamical symmetry. For η = 1 one obtains the U(3) ⊗ U(3) or the
vibrational limit; for η = 0 one encounters the three limiting cases of deformed
shapes discussed above: g = 0 (O(6)−rotor), g = 1, ω = (+1) (SU+(3)−axial
rotor), and g = 1, ω = (−1) (SU−(3)−triaxial rotor). If one compares this
phase diagram with that of IBM-2 [11–13], it can be seen that the only differ-
ence in the present case is the corner U(3)⊗U(3) corresponding to harmonic (or
unharmonic) vibrations in a 3−dimensional phase space (or, alternatively, to two
uncoupled oscillators in a 6−dimensional direct product phase space) instead of
the 5−dimensional one in the IBM-2. These results suggest that only the dynam-
ical symmetries generated by the bosons (“building blocks”) are of importance
for the description of certain collective motions in nuclei (vibrations, rotations,
mixed rotation-vibration modes) rather than the tensorial or fermionic nature of
the bosons.

129



H. G. Ganev

Figure 5. Phase diagram of IVBM. The corners of the pyramid correspond to dynamical
symmetries.

7 Conclusions

In the present paper, the geometrical analysis of the different dynamical symme-
tries of the two-fluid IVBM with the U(6) as a dynamical group is carried out
by means of coherent state method. The latter allows the calculation of the clas-
sical limit of the Hamiltonians corresponding to different dynamical symmetries
in terms of appropriately chosen classical (geometrical) variables representing
the boson degrees of freedom. The different dynamical symmetries correspond
to qualitatively distinct ground state equilibrium configurations, which consti-
tute the phases of the system.

We have studied the phase structure of IVBM and four shape phases cor-
responding to its four dynamical limits have been obtained: spherical, U(3) ⊗
U(3), γ−unstable, O(6), axially symmetric deformed, SU+(3), and deformed
triaxial, SU−(3). The SU−(3) dynamical symmetry limit which gives rise to
the triaxial shape phase is generated by a transformation from the class of in-
ner automorphisms. The inner automorphisms provide new dynamical (hidden)
symmetries of the quantum system under consideration. Of the various (infinite
in number) automorphisms, only a certain class of seemingly irrelevant ones are
of physical importance, as the case considered here.

The obtained phase diagram of IVBM resembles that of IBM-2 and reveals
the common physical content that relates the two algebraic models in their de-
scription of nuclear two-fluid-like systems with various collective properties.
Classically, both IBM-2 and IVBM are able to describe the main collective
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modes that manifest themselves in nuclear collective motion: 1) harmonic (or
unharmonic) vibrations; 2) rotations of axially or triaxially deformed nuclei; and
3) rotation-vibrational properties of transitional (γ− unstable) nuclei.

The study of the phase structure, obtained in this paper, can be further ex-
tended to the investigation of the quantum phase transitions that can take place
between different ground state configurations or “shapes”, occurring at zero tem-
perature as a function of the corresponding control parameter.
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