
NUCLEAR THEORY, Vol. 29 (2010)
eds. A. Georgieva, N. Minkov, Heron Press, Sofia

Approximate Symmetries in Nuclear Structure

Dennis Bonatsos
Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia
Paraskevi, Attiki, Greece

Abstract. Dynamical symmetries have played a central role for many years in
the study of nuclear structure. Recently, the concepts of Partial Dynamical Sym-
metry (PDS) and Quasi-Dynamical Symmetry (QDS) have been introduced. We
shall discuss examples of PDS appearing in the framework of geometrical col-
lective models, as well as examples of PDS and QDS appearing in the large
boson number limit of the Interacting Boson Model.

1 Introduction

Dynamical symmetries have been used in nuclear structure for several years. A
well known example is provided by the Interacting Boson Model [1], having
an overal U(6) symmetry, within which the dynamical symmetries U(5) [cor-
responding to vibrational nuclei], SU(3) [representing prolate axially deformed
nuclei], and O(6) [describing nuclei soft with respect to axial asymmetry (γ-
soft)] occur. These dynamical symmetries are traditionally placed at the corners
of the symmetry triangle of IBM [2], depicted in Figure 4.

More recently, two new kinds of symmetries have been considered, the Par-
tial Dynamical Symmetries (PDS) [3–6] and the Quasi-Dynamical Symmetries
(QDS) [7–11].

There are three kinds of Partial Dynamical Symmetries [3–6]:

[i) Type I, where some of the states preserve all the relevant symmetry;

ii) Type II, in which all the states preserve part of the dynamical symmetry;

iii) Type III, where some of the states preserve part of the dynamical symme-
try.

In Section 2 we will show [12, 13] that a PDS of Type I characterizes the
0+ states of several special solutions of the Bohr Hamiltonian. Furthermore, in
Section 3 we will show [14] that signs of a yet unknown PDS seem to appear
near the critical line [15–17] of the IBM.

On the other hand, Quasi-Dynamical Symmetries [7–11] are defined as the
situations in which dynamical symmetries persist despite strong symmetry-break-
ing interactions. In Section 4 we will show [18] that such a QDS appears to be
providing an explanation for the existence of the Alhassid–Whelan arc of regu-
larity [19, 20] among chaotic regions within the symmetry triangle of the IBM.
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2 Partial Dynamical Symmetry for 0+ states of special solutions of
the Bohr Hamiltonian

Several special solutions of the Bohr Hamiltonian have been developed in rela-
tion to critical point symmetries, appearing in regions of the nuclear chart where
abrupt changes from one nuclear shape to another are observed [21, 22]. In par-
ticular, the E(5) critical point symmetry [23] corresponds to the second order
shape/phase transition between spherical and γ-unstable nuclei, while the X(5)
solution [24] corresponds to the first order shape/phase transition between spher-
ical and prolate axially deformed nuclei. In both cases the Bohr Hamiltonian in
5 dimensions is used. Fixing γ = 0 in the later case, one obtains X(3) [25], a
solution of the Bohr Hamiltonian in 3 dimensions. Z(5) [26] is a solution for
γ ≈ 30o, related to triaxial nuclei, while Z(4) [27] is a similar solution in 4
dimensions with γ fixed to 30o.

In these special solutions, an infinite square well potential is used in the β
degree of freedom, the solutions being Bessel functions Jν . The order ν for
several different models is shown in Table 1. One can easily see that in all
models of this kind the energies of the 0+ states are given by [12, 13]

E(0+
m) = An

(
n+

D + 1
2

)
, n = m− 1 (1)

where D is the number of degrees of freedom in the given model.
The consequences of this result can be seen in Figure 1. While the 0+ states

in the various models appear different when normalized to the first excited 2+

state, they become identical if they are normalized to the first excited 0+ state.
It is worth remarking in Figure 1 that, surprisingly, the same behaviour appears

Table 1. Order ν, dimension, D, of the model space and ν for Jπ = 0+ states in the
geometrical models E(5), X(5), Z(5), Z(4), and X(3). J is the spin of the level, τ = J/2
(in the ground state band), and nw is the wobbling quantum number [28], which is zero
for 0+ states. Taken from Ref. [13].

Model ν D ν(J=0+)

E(5) τ +
3

2
5

3

2

X(5)

r
J(J + 1)

3
+

9

4
5

3

2

Z(5)

p
J(J + 4) + 3nw(2J − nw) + 9

2
5

3

2

Z(4)

p
J(J + 4) + 3nw(2J − nw) + 4

2
4 1

X(3)

r
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3
+

1

4
3

1

2
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Figure 1. (Left) Energies of excited 0+ states in the E(5), Z(5), and X(5) models as well
as an IBA calculation near the critical point (see text). (Right) Same as left with the
energies normalized to the first excited 0+ state energy. Taken from Ref. [12].

approximately near the critical region of the IBM. We shall further refer to this
fact in Section 3.

Considering the properties of the 0+ states within the Euclidean algebras
E(D), one can prove [13] that in all cases the 0+ states of the models given in
Table 1 fulfill the corresponding E(D) symmetry. We thus have a PDS of Type
I, in which some of the states (the 0+ states) preserve all the symmetry, which is
the E(D) symmetry in this case.

3 Signs of PDS near the critical region of the IBM

We now focus attention on the IBM, especially at large boson numbers. We use
an IBA Hamiltonian of the form [29]

H(ζ, χ) = c

[
(1 − ζ)n̂d − ζ

4NB
Q̂χ · Q̂χ

]
, (2)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ(d†d̃)(2), NB is the number of
valence bosons, and c is a scaling factor. The above Hamiltonian contains two
parameters, ζ and χ, with the parameter ζ ranging from 0 to 1, and the parameter
χ ranging from 0 to −√

7/2. The U(5) symmetry is given by ζ = 0, any χ, the
SU(3) symmetry by ζ = 1 and χ = −√

7/2, and the O(6) symmetry by ζ = 1
and χ = 0. With this parameterization, the entire symmetry triangle, shown in
Figure 4, can be described, along with each of the three dynamical symmetry
limits. Calculations in this work have been performed with the code IBAR [30,
31], which has recently been developed to handle large boson numbers.

As seen in Figure 2, certain lines representing degeneracies of pairs of levels
[(61, 0+

2 ), (101, 0+
3 ), (141, 0+

4 )] approach the critical region as the boson number
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Figure 2. (Top) Line of degeneracy between the 0+
2 and 6+

1 levels (solid line) for NB =
10, 40, 100, and 250 in the IBA triangle. (Bottom) Line of degeneracy between the 0+

3

and 10+
1 levels (solid line) for NB = 250 (left) and between the 0+

4 and 14+
1 levels (solid

line) for NB = 250 (right) in the IBA triangle. The dashed lines denote the critical region
in the IBA obtained in the large NB limit from the intrinsic state formalism [15, 32, 33].
Taken from Ref. [14].

is increased. In Figure 3 one can see that these are degeneracies between mem-
bers of the ground state band (gsb) and the 0+ states mentioned in Section 2.

As shown in Table 2, one can see empirically that these states approximately
satisfy the expression [13]

J(J + 2) = 12n(n+ 3), (3)

where J indicates the angular momentum of the gsb members, while n enumer-
ates the 0+ states. These degeneracies maybe indicate the existence of some
underlying symmetry, which is yet unknown. Locating this symmetry could
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Table 2. Predictions of the IBA (with NB = 250, χ = −√
7/2, ζ = 0.473) compared

to analytic expressions (see text). On the left, excited 0+ energies are compared while
on the right, energies in the ground state band are compared. Results are normalized to
E(2+

1 ) = 1.0, the numerical factors accompanying n(n+3) and J(J+2) in the column
headings reflecting this normalization. Taken from Ref. [13].

Analytic IBA Analytic IBA
n 3

2
n(n+ 3) E(0+

m) J 1
8
J(J + 2) E(J)

2 1.00 1.00
4 3.00 3.05

1 6.00 6.08 6 6.00 6.08
8 10.00 10.00

2 15.00 14.85 10 15.00 14.73
12 21.00 20.23

3 27.00 27.57 14 28.00 26.43
16 36.00 33.30

4 42.00 42.55 18 45.00 40.81

0+
2+
4+

6+

8+

10+

12+

14+

16+

18+

NB = 250, z = 0.4729

0+

2+

4+

6+

8+

10+

12+

0+

2+

4+

6+

8+

0+

2+

4+ 0+

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

E
 HVeML

 

Figure 3. Energies of low-lying states (normalized toE(2+
1 )=1) of the Hamiltonian of Eq.

(1) with χ=−√
7/2, ζ=0.4729, and NB=250. The parameter ζ was chosen to reproduce

the approximate degeneracy of E(0+
2 ) and E(6+

1 ). Taken from Ref. [14].

help in clarifying the nature of the X(5) critical point symmetry, which remains
unknown to date.

4 A Quasi-Dynamical Symmetry underlying the Alhassid–Whelan
arc of regularity

A puzzle which has been around for nearly 20 years is the existence of the
Alhassid–Whelan arc of regularity [19, 20], a region of increased regularity
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Figure 4. IBA symmetry triangle in the parametrization of Eq. (4) with the three dy-
namical symmetries and the Alhassid–Whelan arc of regularity. The shape coexistence
region [16] between spherical and deformed phases, shown by slanted lines near the U(5)
vertex, encloses a first order phase transition terminating in a point of second order tran-
sition on the U(5)-O(6) leg. The loci of the degeneracies E(2+

β )=E(2+
γ ) (dashed line on

the right, corresponding to the QDS discussed in this section) andE(4+
1 )=E(0+

2 ) (dotted
line on the left) are shown for NB=250 (top) and NB = 25 (bottom). In the bottom part,
the ν-diagram, based on Ref. [20] is shown. Taken from Ref. [18].

within the symmetry triangle of the IBM, amidst chaotic regions, as shown in
Figure 4. In these studies a different parametrization (using the parameters η, χ)
of the IBM Hamiltonian of Eq. (2) has been used, reading [19, 20]

H(η, χ) = c

[
ηn̂d +

η − 1
NB

Q̂χ · Q̂χ
]
, (4)

where the symbols have the same meaning as in Eq. (2).
We shall show that an underlying SU(3) QDS is responsible for the existence

of the arc. In order to do so, we shall use some measures of SU(3), like the
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Figure 5. The energy difference E(2+
γ )−E(2+

β ) (normalized to E(2+
1 )) and the quality

measures σβγ [Eq. (5), up to Lmax=10] and σ0 [Eq. (6), up to imax=9], are shown for
η=0.632, varying χ, and boson numbers NB=25, 100, 250. Taken from Ref. [18].

amount of the degeneracy breaking between the β1 and γ1 bands [18]

σβγ =

√√√√
∑Lmax

2 [E(L+
β ) − E(L+

γ )]2
Lmax

2 − 1
, (5)

where L+
β =L+

γ and all energies are normalized to E(2+
1 ). In order to examine to

which degree the 0+ states occurring in an IBM calculation obey the SU(3) rules,
we shall also use the relevant rms deviation of the 0+ states from the positions
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predicted by the second order Casimir operator of SU(3) [18],

σ0 =

√∑imax
3 [E(0+

i )th − E(0+
i )SU(3)]2

imax − 3
. (6)

with all energies normalized to E(0+
2 ) and considering the lowest nine 0+ states

(i.e., imax=9).
As depicted in Figure 5, one can see numerically that both measures of SU(3)

behaviour exhibit at large boson numbers strong minima at the point where the
degeneracy 2+

γ = 2+
β occurs. This indicates that the spectra acquire an SU(3)

structure if this degeneracy is imposed. In Figure 6 one can see that the SU(3)
degeneracies appear also at higher bands, well beyond the gsb.

The track of this degeneracy within the symmetry triangle of the IBM shown
in Figure 4, nearly coincides with the Alhassid–Whelan arc of regularity, sug-
gesting an underlying SU(3) symmetry as the reason behind the existence of the
branch of the arc between the SU(3) vertex and the critical line. In Figure 7 one
can see that the SU(3) measures remain close to their SU(3) values far beyond
the SU(3) point, thus providing an example of a SU(3) QDS. A similar line,
based on the degeneracy E(4+

1 ) = E(0+
2 ), can be obtained between the U(5)

vertex and the critical line, but the relevant minima there are rather shallow, in
sharp contrast with the deep minima of Figure 5.
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Figure 6. Level scheme for an IBA calculation at a point where E(2+
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γ ). An ex-
panded energy scale (x25) is used within the boxes to show the small rotational energies.
The SU(3) 0+ bandheads are also shown. Taken from Ref. [14].
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shown for different values of η and NB=25, 100, 250. Taken from Ref. [14].

5 Conclusion

We have shown some examples of PDS and QDS appearing within special solu-
tions of the Bohr Hamiltonian, as well as in the framework of the IBM. Further
searches for approximate symmetries in nuclear structure models appear to be
promising.
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