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Abstract.

The low–energy excitation spectra of deformed even–even Th, U and Pu iso-
topes are analyzed within the dinuclear system model. The model is based on
the assumption that the cluster type shapes are produced by the collective mo-
tion in the mass–asymmetry coordinate. To describe the reflection asymmetric
collective modes characterized by the nonzero values of K, the intrinsic excita-
tions of clusters are taken into account. The observed excitation spectrum and
angular momentum dependence of the parity splitting are explained.

1 Introduction

In the even–even isotopes of actinides and also in the heavy Ba and Ce iso-
topes the low–lying negative parity states are observed together with the usually
presented collective positive-parity states combined into rotational or quasirota-
tional ground–state bands. Formation of the positive–parity rotational or quasiro-
tational bands is connected in general to the quadrupole collective motion, while
the lowering of the negative-parity states is a signature of the presence of the
reflection asymmetric collective mode. There are several approaches to treat the
collective motion related to the reflection asymmetric degrees of freedom. One
of them is based on the concept of the nuclear mean field [1] which has a static
mirror asymmetric deformation or is characterized by a large amplitude of re-
flection asymmetric vibrations around the equilibrium shape. Another approach
is based on the assumption that the reflection asymmetric shape is a consequence
of the α–clustering in nuclei [2]. It is also known from the Nilsson–Strutinsky
type calculations for light nuclei that nuclear configurations corresponding to
the minima of the potential energy contain particular symmetries which are re-
lated to certain cluster structures [3,4]. Several calculations performed for heavy
nuclei [5–7] have shown that configurations with large equilibrium quadrupole
deformations and low–lying collective negative parity states are strongly related
to clustering. We mention also a different approach to description of the prop-
erties of the alternating parity bands which is based on the idea of the aligned
octupole phonons [8, 9].
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The main idea of the cluster model developed in [7, 10, 11] is that a dynam-
ics of a reflection asymmetric collective motion can be treated as a collective
motion of nucleons between two clusters or as a motion in a mass–asymmetry
coordinate. Such collective motion simultaneously creates deformations with
even and odd–multipolarities. Within this approach the existing experimental
data on the angular momentum dependence of the parity splitting in the excita-
tion spectra and the multipole transition moments (E1,E2,E3) of the low–lying
alternating parity states in odd and even actinides 220−228Ra, 223,225,227Ac,
222−224,226,228−232Th, 231Pa, 232−234,236,238U and 240,242Po and the medium
mass nuclei 144,146,148Ba, 151,153Pm, 146,148Ce 153,155Eu and 146,148Nd are
well described. The good agreement between the results of calculations and the
experimental data support a cluster interpretation of the reflection–asymmetric
states.

In our previous publications [7,10,11] we have considered in the even–even
nuclei only the low–lying collective negative parity states with K=0. At the
same time, there are experimental data which indicate on a presence of the
collective states related to the reflection asymmetric modes characterized by
nonzero values of K. To describe in the framework of the cluster approach
the properties of these collective modes we should take into account the intrinsic
excitations of clusters produced by the motion of the nucleus in mass-asymmetry
degrees of freedom. It is the aim of the present investigation to extend our model
to take into account such an excitations.

2 Model

The model is based on the assumption that intrinsic wave function of nucleus
(A,Z) can be represented as a superposition of different dinuclear system con-
figurations and the mononucleus. As a dinuclear system (DNS) we understand a
system of clusters (A1, Z1) and (A2, Z2), (where A1 +A2 = A and Z1 +Z2 =
Z) in touching configuration. The mononucleus represents the part of nuclear
wave function which can not be decomposed into dinuclear systems and treated
as a compound nucleus without reflection–asymmetric deformation. Since the
ground–state wave function is distributed over different configurations, the en-
ergy of the mononucleus is not equal to the experimental binding energy.

In our model we suppose that the reflection asymmetric deformation near the
ground–state of the nucleus is related to the contribution of asymmetric dinuclear
systems. This idea is related to the experimental observation that all actinides
nuclei are good α–emitters. Thus there is a significant probability to form an α–
cluster on the surface of the considered nucleus. Due to the stable closed–shell
structure of the α–cluster, it is reasonable to presume that the ground–state and
low–excited states of actinides wave functions can have a significant contribution
of α + (A − 4, Z − 2) cluster structures (α–cluster DNS) without appreciable
internal excitations of the heavy fragment.

Taking into account the determinative role of the α–cluster DNS in the for-
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mulation of the model collective Hamiltonian, we describe a nuclear system pro-
duced by the motion of nucleus in mass–asymmetry as consisting of spherical
non–excited light cluster (A2, Z2) and the heavy deformed fragment (A1, Z1)
with axially symmetric quadrupole deformation (β = β0, γ = 0). We consider
only the rotational excitations of the heavy fragment and avoid the consideration
of the β– and γ–vibrations. The mononucleus configuration is treated in the
same way with light cluster of zero mass.

The relative contribution of the different DNS configurations and the mononu-
cleus are determined by the collective Hamiltonian for the motion in mass–
asymmetry (transfer of nucleons between clusters). For convenience, instead
of usual definition of mass–asymmetry coordinate η = (A1 − A2)/(A1 + A2)
we use positively–defined variable

ξ = 2A2/A = 1 − η. (1)

The values ξ=0 or ξ=2 correspond to the mononucleus configurations (A1 =
A,A2 = 0) or (A1 = 0, A2 = A), respectively. For the further use we introduce
special notation ξα = 8/A for the alpha–particle DNS. The charge asymme-
try ξZ is not considered as an independent collective variable, and fixed as to
minimize the symmetry energy of the DNS for each value of ξ.

The potential energy of the dinuclear system is determined as

U(ξ, ε) = B1(ξ) +B2(ξ) −B12 + V (R = Rm, ξ, β0, ε), (2)

where the internuclear distance R = Rm is the touching distance between clus-
ters and is set to be equal to the minimum of the potential in R for a given ξ.
The quantities B1, B2 are the binding energies of the clusters forming the DNS
at a given mass–asymmetry and B12 is the binding energy of the compound nu-
cleus. The experimental ground–state masses [12], if available, are used in the
calculations. If not, the predictions of [13] are used. Shell effects and pairing
correlations are included in the binding energies. Because of the normalization
by B12, the energy of the lowest solution must be zero.

The quantity V (R = Rm, ξ, β0, ε) in (2) is the nucleus–nucleus potential
which is calculated as a sum of Coulomb UC and nuclear UN interactions. The
potential UN is obtained in double–folding procedure with the density depen-
dent nucleon–nucleon interaction. The parameters of nucleon-nucleon interac-
tions are fixed in nuclear structure calculations. The nuclear densities are ap-
proximated by the Fermi distributions with the radius parameter r0=1.15 fm for
heavy fragments and r0=1.00 fm for light (4He, 7Li) fragments. The diffuseness
parameter of the density distribution of a light cluster is taken as 0.48 fm. For

heavy cluster, we set a = 0.56
√
B

(0)
n /Bn, where B(0)

n and Bn are the neutron
binding energies of the studied nucleus and of the heaviest isotope of considered
element. The details of calculations are presented in [14].
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Figure 1. Schematic picture illustrates degrees of freedom used in the model to describe
dinuclear system. Orientations of the relative distance vector Rm and the symmetry axis
of the heavy deformed cluster z′ with respect to the laboratory frame z are defined by the
angles Ω0 = (θ0, φ0) and Ωh = (θh, φh), respectively. The angle ε is the angle between
vector Rm and z′.

The relative orientation of the clusters in DNS is accounted in (2) by the ε
(see Figure 1) which is a plain angle between the vector Rm and the symmetry
axis of the deformed heavy nucleus. It can be related to the angles Ωh=(θh, φh)
and Ω0=(θ0, φ0) determining the orientations of symmetry axis of heavy frag-
ment and vector Rm in the laboratory frame, respectively, by the following ex-
pression

Yl0(ε, 0) =

√
4π

2l + 1
(Y2(Ωh) · Y2(Ω0)) . (3)

The potential energy as a function of a relative orientation of fragments has a
minimum which corresponds to the pole–to–pole orientation (ε=0). In order to
simplify the calculations we approximate the ε–dependence of the potential en-
ergy by the second order expansion in the Legendre polynomials which provides
the following expression

U(ξ, ε) = V (Rm, ξ, β0) + V0(Rm, β0)ξ

√
4π
5

(Y2(Ωh) · Y2(Ω0)) . (4)

Since ξ � 1, we expand the interaction term in (4) leaving only term linear in
ξ, that is V0(Rm, ξ, β0) ≈ V0(Rm, β0)ξ. The value of V0(Rm, β0) is fixed by
fitting ε–dependence of the potential energy U with expression (4) for the alpha–
particle DNS. A specific point in the potential energy is ξ=0 (mononucleus).
The potential energy at ξ=0 can not be calculated by means of eq. (2) so it is
considered as a parameter of the model.

In the following, we treat mass–asymmetry variable ξ as a continuous vari-
able. In order to solve the Schrödinger equation in ξ, a smooth parametrization
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of the potential V (ξ) is used

V (ξ) = V (ξ = 0) +
k=3∑

k=1

a2kξ
2l, (5)

where parameters a2k are determined by the experimental ground–state energy,
calculated potential energies for ξ = ξα and ξ = ξLi and by the requirement
that the potential (5) has minimum for alpha-particle DNS if V (ξα) < 0. If
the minimum is located at ξ = 0, only two parameters, a2 and a4 in (5) are
necessary. The potential energy at the mononucleus V (ξ = 0) is fixed so as to
reproduce the experimental binding energy of the corresponded nucleus as the
lowest 0+ solution of the eigenvalue problem with the collective Hamiltonian of
the model.

The kinetic energy can be constructed from the parts describing the kinetic
energy of motion in mass–asymmetry ξ, the rotation of the DNS as a whole
and the rotational excitations of the heavy fragment. The β– and γ–vibrations
of the heavy fragment, which are responsible for the appearance of low-lying
rotational bands build on the 0+ state and 2+, are not considered in the model.
While the γ-vibrations does not affect much the angular modes, the change of the
deformation parameter caused by the β-vibrations have an effect on the angular
dependence of the potential. We account for this effect by taking the dynamical
deformations of the fragments of DNS from [15] instead of the ground-state
deformations.

The Hamiltonian of the model can be presented in the form

Ĥ = Ĥ0 + V̂int

Ĥ0 = − �
2

2Bξ
1
ξ

∂

∂ξ
ξ
∂

∂ξ
+

�
2

2�h l̂h +
�

2

2μR2
m

l̂0 + V (ξ,Rm)

V̂int =
C0ξ

2

∑

μ

Y ∗
2μ(Ωh)Y2μ(Ω0), (6)

where

l̂i = − 1
sin θi

∂

∂θi
sin θi

∂

∂θi
− 1

sin2 θ2i

∂2

∂φ2
i

, (i = 0, h), (7)

μ = m0
A1A2
A is the reduced mass of the DNS and �h is the moment of inertia of

the heavy fragment. We set �h = c0�(r)
h , where �(r)

h is the rigid body moment
of inertia of the heavy fragment, and c0 is a scaling parameter, which is fixed
to describe the energy of first 2+ state as the lowest 2+ solution of the model
Hamiltonian.

In eq. (6), Bξ is the mass parameter for the motion in mass–asymmetry. The
procedure of calculation of Bξ is given in [16]. Our calculation show that Bξ
is a smooth function of mass number A. As as consequence we take nearly the
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same value of Bξ = 20 × 105 m0fm2 for all considered nuclei with a variation
of 10%.

The Hamiltonian (6) is diagonalized on the set of basis functions

Φl1,l2,nLM,p = Fn(ξ) [Yl1(Ωh) ⊗ Yl2(ΩR)](L,M) , (8)

with p = (−1)l1+l2 , n=0,1,2,..., l1=0,2,4,..., l2=0,1,2... Here, Fn(ξ) satisfy
the condition L′

n(0) = 0 for a mononucleus configuration (for example, radial
wave-functions for the two-dimension oscillator). The angular part of the wave
function (8) is given by the bipolar spherical harmonics, which provides the
proper transformation with respect to the rotation and space inversion. Since we
assumed that the heavy fragment is the axially–symmetric quadrupole rotator
the quantum number l1 can take only even values.

3 Results of Calculation

The excitation spectra obtained by solving the Schrödinger equation with Hamil-
tonian (6) are presented on Figure 2 together with available experimental data for
230Th,232U, 238U, and 240Pu nuclei. These are representative for all considered
nuclei. The experimental energies and spin and parity assignments are taken
from [17]. One can see that the structure of the calculated spectra are very sim-
ilar for all considered nuclei. To elucidate the peculiarities of this structure, the
spectrum provided by the model can be approximately interpreted by assuming
that mass–asymmetry motion can be roughly separated from the angular motion
and examining what function from the basis set (8) contribute most to the wave
functions of states of a given rotational band.

For the ground–state rotational band the angular part of the wave–function
of the state with angular momentum L can be approximately given by the func-
tion [Yl1=L(Ωh) ⊗ Yl2=0(Ω0)](L,M). Since p = (−1)l1+l2 and l1 can take
only even values, the ground–state band contains only states of positive par-
ity and even angular momentum. The wave functions of the lowest negative
parity states have the dominant contribution from the component [Yl1=L(Ωh) ⊗
Yl2=1(Ω0)](L+1,M). Such a solutions form a rotational band containing the state
of odd angular momentum and negative parity. This band can be interpreted
as Kπ = 0− band. One should note, however, that each eigenfunction of
Hamiltonian (6) is supperposition of states with different K values, thus K
can be considered as a quantum number only approximately. The next low-
est band of negative parity is formed from the states with main contribution of
[Yl1=L(Ωh) ⊗ Yl2=1(Ω0)](L−1,M) component for odd angular momentum and
[Yl1=L(Ωh) ⊗ Yl2=1(Ω0)](L,M) component for even angular momentum. This
band can be approximately interpreted as Kπ = 1−. In this case the angular
momentum created by the vibration is taken away from the total angular mo-
mentum thus increasing the energy of this rotational band with respect to the
states of 0− band.
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Figure 2. Calculated and experimental low–energy level schemes of 230Th, 232U, 238U,
240Pu. Experimental energies, spin and parity assignments are taken from [17].

The first excited 0+ state is obtained as a lowest excitation in the mass-
asymmetry coordinate. Note that β− and γ− vibrations are not included in the
calculations. Thus we expect that that the lowest spectra of actinides will contain
at least two 0+ states at the energy of around 1 MeV. The sequence of rotational
bands discussed above is repeated again with excited 0+ playing a role of the
ground state.

One can see from the Figure 2 that the overall agreement between the cal-
culated and experimental spectra are rather good. The ground–state and first
negative–parity band and the first excited 0+ band are reproduced quite well for
most considered cases. However, beyond the lowest negative–parity band the
situation is not so clear. In 232U and 230Th the next lowest band is claimed to be
Kπ = 2−, while in some cases (not presented here) is claimed to be Kπ = 3−

as for 236U and 242Pu. In contrast, in our calculations, the next lowest rotational
band is always built upon 1− state. If the model is correct this suggests that
those Kπ = 2− and Kπ = 3− bands are in fact starts with 1−, with lowest
states experimentally missing.

The interesting quantity is the parity splitting defined as the energy shift be-
tween the states of 0− and 0+ rotational bands. Dependence of the experimental
and calculated values of a parity splitting in the ground state and the first negative
parity bands treated as a unified alternating parity band, on angular momentum
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Figure 3. Calculated (lines) and experimental (solid circles) values of parity splitting (see
Eq.(9)). Experimental values are taken from [17].

is illustrated in Figure 3. The parity splitting is defined by the expression

S(I−) = E(I−) −
(I + 1)E+

(I−1) + IE+
(I+1)

2I + 1
, (9)

which provides zero value of parity splitting for the rotational band of nucleus
with rigid octupole deformation.

Having maximum value in the beginning of the band, the parity splitting
tends to decrease with increase of angular momentum. In the proposed model
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Figure 4. Calculated level scheme of dinuclear system α+234Th.

the value of parity splitting is related to the weight of the α–cluster dinuclear
system component in the intrinsic wave function of the nucleus. To show this,
on Figure 4 the spectrum for the pure α–cluster DNS is presented. In this imag-
inary case the weight of mononucleus configuration is zero. One can see that
in this case the ground–state band has the form of unperturbed alternative par-
ity rotational band as it is expected for the stable reflection asymmetric shape.
Thus, for α–particle DNS the parity splitting is close to zero for all values of an-
gular momentum. It is also clear that in opposite case, when the weight of DNS
configurations in the wave function is zero we deal with quadrupole–deformed
nucleus and the energies of the negative parity states become infinite granting
infinite value of parity splitting. Thus, the parity splitting is determined by the
relative weights of the cluster components and the mononucleus in the wave
function. Due to the larger moment of inertia than that of the mononucleus,
the weight of α-particle DNS is increasing with angular momentum providing
decrease of parity splitting.
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4 Conclusion

We have suggested a cluster interpretation of the properties of the multiple nega-
tive parity bands in deformed even–even actinides. The collective motion related
to the cluster degree of freedom leads to the admixture of the very asymmetric
cluster configurations to the intrinsic nucleus wave function. To take into ac-
count the reflection asymmetric modes with nonzero values of K, the rotational
excitations of the heavy cluster is taken into account. The resulting energy spec-
trum consists of the ground state band, the excited 0+ band and several negative
parity rotational bands which can be approximately interpreted asKπ = 0− and
Kπ = 1− bands. The angular momentum dependence of the parity splitting is
described. The results of calculations are in overall agreement with the exper-
imental data. The model suggests the interpretation of second negative parity
band in the spectra of the even-even deformed actinides as Kπ = 1−.
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