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Abstract.

The Bohr Hamiltonian describing the collective motion of atomic nuclei was
modified recently in [1] by allowing the mass to depend on the nuclear defor-
mation. In this article an extensive review of the above procedure is presented
with the aim to provide signs for its generalisation to the mass tensor case.

1 Introduction

The behavior of mass in all the range of nuclear structure is a fundamental prob-
lem of nuclear physics. From the liquid drop to the interacting bosons decades
passed in which the problem of mass was faced mainly by microscopic methods.

The Bohr Hamiltonian [2] and its extension, the geometric collective model
(GCM) [3], revealed the strength of the liquid drop picture, which is the under-
standing of the nuclear collectivity, mainly through the discrimination of spher-
ical and deformed nuclei. The emphasis in the particle structure was due to the
weakness of the GCM to agree with the experimental data for the masses of de-
formed nuclei. A characteristic feature of this weakness views the behavior of
the moments of inertia for deformed nuclei. They are predicted to increase pro-
portionally to β2 [4], where β is the collective variable corresponding to the axial
deformation, while experimentally a much more moderate increase is observed.

The microscopic methods for the description of the collective features of
atomic nuclei were introduced by Bohr-Mottelson-Pines [5], and independently
by Bogolyubov [6], with the rising of the nuclear pair correlations. The com-
prehension of nuclear superfluidity gave the beautiful explanation for the mass
difference between even-even and odd nuclei. Furthermore, in the spherical nu-
clei the energy gap appearing between the ground and the first excited state, is
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significantly larger than that for the deformed nuclei [7] and an effective quasi-
particle mass was introduced by Migdal [8], in order to make a more experi-
mentaly consistent prediction for the nuclear moments of inertia of deformed
nuclei. The spontaneous breakdown of spherical symmetry [9] during the tran-
sition from a superfluid nucleus to a deformed one, signaled the entrance of
mean field theories such as Hartree-Fock-Bogolyubov theories and the Random
Phase Approximation (RPA). The main result of these efforts, regarding the be-
havior of mass in nuclear collectivity, [10] is that the mass coefficients should be
different for the vibrational and the rotational degrees of freedom. Recently an
argumentation is being developed [11], based on experimental data for various
nuclei, which amounts to consider the mass coefficient of the Bohr Hamiltonian,
not as a constant scalar quantity but as a mass tensor with variable elements ob-
tained from experimental data. Therefore the microscopic results for the mass
behavior in nuclear structure can be hosted in the liquid drop picture, by first
considering a non constant mass, and afterwards generalizing it to the tensor
case.

On the other hand, the symmetries of the liquid drop can in principle be
obtained from a second quantization procedure, and this is the algebraic frame-
work of the Interacting Boson Model (IBM) [12], which classifies the various
types of nuclear collective motion with distinguished simplicity. The states of
spherical nuclei “sit” in the representations of U(5) symmetry, the states of γ-
unstable nuclei “sit” in the representations of O(6) symmetry and those of the
axial deformed nuclei “sit” in the representations of SU(3) symmetry. The SU(3)
symmetry follows the experimental data and reveals the importance of IBM, as
such a symmetry has not been obtained yet from the Bohr Hamiltonian.

As the second quantization is always based on the canonical commutation re-
lations, it can be stated that the algebraic methods of the IBM can give an insight
for the canonical quantization of the liquid drop and more directly, the canoni-
cal quantization of the liquid drop must correspond to the classical limit of the
IBM. Concerning mass, in the classical limit of the IBM, in addition to the usual
term of the kinetic energy, π2, terms of the form β2π2 appear in the O(6) lim-
iting symmetry and in the U(5)-O(6) transition region, while more complicated
terms appear in the SU(3) limiting symmetry, as well as in the U(5)-SU(3) and
SU(3)-O(6) transition regions [13]. These terms clearly challenge us to consider
deformation effects on the momentum operator, that is the momentum operator
should get dressed with terms of deformation. A mathematicaly self-consistent
way to obtain such a type of quantization is the deformed algebras. Quesne and
Tkachuk [14] have demonstrated that, under certain circumstances, deformed
canonical commutation relations are equivalent to a position dependent mass
and also to a curved space.

Our analysis is based on the above two axes. The first is the modification
of the Bohr Hamiltonian with a non constant mass coefficient of the kinetic
term, while the second is the classical limit of the IBM which indicates the
deformation of the canonical commutation relations of the liquid drop. Taking
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into advantage the “Quesne and Tkachuk equivalence” and the presence of β in
the classical limit of the IBM for the momentum operator, the Bohr Hamiltonian
is modified with a mass depending on the collective variable β. The deformation
of the canonical commutation relations is not necessary at this level, although it
will be proved to be the path to the tensor mass generalization.

2 The Quesne and Tkachuk Equivalence and Position Dependent
Mass Bohr Hamiltonian

A mathematicaly self-consistent way to obtain deformed operators is that of the
deformed algebras, where the usual canonical quantization

[x,p] = i�, (1)

is modified by the presence of a so called deformation function, which in prin-
ciple may depend on position, momentum, or their combinations. Quesne and
Tkachuk [14] showed that if this deformation is a function of the position, that
is

[x,p] = i�f(x), (2)

then the following equivalence holds (the Quesne and Tkachuk equivalence)

f2(x) =
1

M(x)
=

1
g(x)

, (3)

where 1/M(x) is an inverted position dependent mass and 1/g(x) is an in-
verted diagonalized metric. In this case, the momentum operator is deformed as√
f(x)p

√
f(x). In order to follow the results of the IBM for the β-dependent

momentum and the path to a non-constant mass coefficient in the Bohr Hamilto-
nian, in the beginning we consider only the first part of this equivalence. There-
fore we review [14] now the general effects of a quantum mechanical system
with a position dependent mass.

A Position Dependent Mass (PDM) m(x) [14], does not commute with the
momentum p = −i�∇. As a consequence, there are many ways to generalize
the usual form of the kinetic energy, p2/(2m0), where m0 is a constant mass,
in order to obtain a Hermitian operator. In order to avoid any specific choices,
one can use the general two-parameter form proposed by von Roos [15], with a
Hamiltonian

H = −�
2

4
[mδ′(x)∇mκ′

(x)∇mλ′
(x) +mλ′

(x)∇mκ′
(x)∇mδ′(x)] + V (x),

(4)
where V is the relevant potential and the parameters δ′, κ′, λ′ are constrained by
the condition δ′ + κ′ + λ′ = −1. Assuming a position dependent mass of the
form

m(x) = m0M(x), M(x) =
1

(f(x))2
, f(x) = 1 + g(x), (5)
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where m0 is a constant mass and M(x) is a dimensionless position-dependent
mass, we obtain the Hamiltonian

H = − �
2

2m0

√
f(x)∇f(x)∇

√
f(x) + Veff (x), (6)

with

Veff (x) = V (x) +
�

2

2m0

[
1
2
(1 − δ − λ)f(x)∇2f(x)

+
(

1
2
− δ

)(
1
2
− λ

)
(∇f(x))2

]
. (7)

Finaly, a PDM Hamiltonian is recognized by the following two features, the
modification of the Laplacian operator by the form

√
f(x)∇f(x)∇√f(x), and

the presence of an effective potential which emerges from higher orders of the
gradient of this deformation function.

What was done in [1]was the application of the PDM framework in the case
of the Bohr Hamiltonian, for a mass dependent on the β variable. Therefore first
a mass dependence of the form

B(β) =
B0

(f(β))2
, (8)

where B0 is a constant, was assumed. As the dependence is a scalar one, it per-
mits us to follow the usual Pauli–Podolsky prescription. Since the deformation
function f depends only on the radial coordinate β, it is expected that the modi-
fication of the Laplacian operator will affect the β part of the resulting equation.
Therefore, according to the general features of a PDM Hamiltonian, we expect
to obtain an effective potential and a modified derivative for the β part of the
Bohr Hamiltonian, the final result reading

[
−1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f − f2

2β2 sin 3γ
∂

∂γ
sin 3γ

∂

∂γ

+
f2

8β2

∑

k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
) + veff

⎤

⎦Ψ = εΨ, (9)

where reduced energies ε = B0E/�
2 and reduced potentials v = B0V/�

2 have
been used. The angular part (γ, θi) is affected in a different way, only by the
presence of the coefficient f2/(8β2), which will be shown to be crucial for the
reduction of the moments of inertia. The other feature, that of the effective
potential, takes the following form in the case of a PDM-Bohr Hamiltonian

veff = v(β, γ) +
1
4
(1 − δ − λ)f∇2f +

1
2

(
1
2
− δ

)(
1
2
− λ

)
(∇f)2. (10)
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3 The Deformed Radial Equation for the γ-unstable
Davidson Potential

The solution of the above Bohr-like equation can be reached for certain classes
of potentials using techniques developed in the context of supersymmetric quan-
tum mechanics (SUSYQM) [16, 17]. Furthermore the integrability condition of
the Shape Invariance which is of great use in the above mentioned techniques,
is the key for determining the deformation function, which in principle is un-
known. As a first test of the PDM Bohr Hamiltonian we applied it to the case
of γ-unstable nuclei, as they are very close to spherical nuclei and depart from
axial symmetry without any energy cost. If an almost spherical nucleus dis-
plays position dependent mass features, then a PDM framework will certainly
be necessary for the nuclear matter that is organized in a deformed shape.

In order to achieve separation of variables we assumed that the potential
v(β, γ) depends only on the variable β, i.e. v(β, γ) = u(β) [18]. For the radial
potential we used the Davidson potential [19]

u(β) = β2 +
β4

0

β2
. (11)

The separation of variables is presented in [1]. Here we state the result for
the radial part. With

veff = u+
1
4
(1− δ− λ)f

(
4f ′

β
+ f ′′

)
+

1
2

(
1
2
− δ

)(
1
2
− λ

)
(f ′)2, (12)

the radial equation takes its deformed version

HR = −1
2

(√
f
d

dβ

√
f

)2

R+ ueffR = εR, (13)

where

ueff = veff +
f2 + βff ′

β2
+

f2

2β2
Λ. (14)

4 SUSY QM, Shape Invariance and the Deformation Function

Following the general method used in SUSYQM [16], one should take the fol-
lowing steps:

i) Factorize the Hamiltonian in terms of generalized ladder operators

H0 = B+
0 B

−
0 + ε0. (15)

ii) Write a hierarchy of Hamiltonians starting from the first one. This means
that the above Hamiltonian should be considered as the first part of the series

Hi = B+
i B

−
i +

i∑

j=0

εj . (16)
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The determination of these operators requires the conceptual tool of the shape
invariance for the following reasons. First, the deformation function that modi-
fies the momentum operator is not yet determined. Second, the superpotential of
the Davidson potential is a known one [16,17], yet the superpotential that we are
looking for should correspond to the effective potential which is also unknown,
because of the presence of the deformation function.

iii) Impose the shape invariance conditions, which are integrability condi-
tions guaranteeing exact solvability.

This condition is the crucial one for the determination of the deformation
function. The effective potential should be shape invariant, which means that it
has to retain the same functional dependence in the whole hierarchy of Hamil-
tonians. If the mass is not position dependent, the effective potential is absent.
This may be the situation for a transitional nucleus, which is between the spher-
ical and γ-unstable behavior. Such a nucleus has a very small, yet finite value
for β0 and therefore the Davidson behavior is appropriate. Now, if there are
slight deviations of this behavior with respect to extremely tiny changes of the
β0, these deviations should be attributed to an effective mass and this can be
realized in part by the effective potential of the PDM framework. The shape
invariance condition states that all these tiny changes should be generated only
by a “fine tuning” of some parameters, leaving the functional dependence of the
Davidson potential shape invariant.

The deformation function is unknown. Its definition should bring a Davidson
behavior to the effective potential, as the last is guided by the shape invariance.
Thus in the last equation of Section 3, we want to have only the terms of the
Davidson potential, that is terms proportional to the β2 and proportional to the
1/β2. The choice for the deformation function

f(β) = 1 + aβ2, (17)

gives the Davidson behavior to the effective potential,

ueff = β2 + a2β2

[
5
2
(1 − δ − λ) + 2

(
1
2
− δ

)(
1
2
− λ

)
+ 3 +

Λ
2

]

+
1
β2

(
1 +

1
2
Λ + β4

0

)
+ a

[
5
2
(1 − δ − λ) + 4 + Λ

]
. (18)

The parameter a is called the deformation parameter. The mass is position de-
pendent for non-zero values of a. Therefore the values of β0 and a show first the
magnitude of the deformation and second the position dependence of the mass.
For tiny changes of β0, the parameter a varies in the Davidson behavior and this
variation reflects the position dependence of the mass during the transition. In
Section 5 this situation is clarified.

Here it is worth pointing out the effect of the deformation function in the
coefficient of the angular part of the PDM Bohr Hamiltonian. From Eq. (9)
it is clear that in the present case the moments of inertia are not proportional to
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Figure 1. The function β2/f2(β) = β2/(1 + aβ2)2, to which moments of inertia are
proportional as seen from Eq. (9), plotted as a function of the nuclear deformation β for
different values of the parameter a. See Secttion 4 for further discussion.

β2 sin2 (γ − 2πk/3) but to (β2/f2(β)) sin2 (γ − 2πk/3).The function β2/f2(β)
is shown in Figure 1 for different values of the parameter a. It is clear that the
increase of the moment of inertia is slowed down by the function f(β), as it is
expected as nuclear deformation sets in [4].

We state again that the shape invariance condition was the tool to determine
the deformation function. This condition in terms of the ladder operators reads

B−
i B

+
i = B+

i+1B
−
i+1 + εi+1. (19)

It is obvious now that the superpotential of the effective potential should be
the one corresponding to the Davidson potential, which is known [17]. Therefore
the ladder operators of the first member of the hierarchy should take the form

B±
0 = ∓ 1√

2

(√
f
d

dβ

√
f

)
+

1√
2

(
c0β + c̄0

1
β

)
, (20)

and those of the next members of the hierarchy of Hamiltonians should take the
form

B±
i = ∓ 1√

2

(√
f
d

dβ

√
f

)
+

1√
2

(
ciβ +

c̄i
β

)
. (21)

From these equations the eigenvalues and eigenfunctions are obtained in [1].
For example the energies of the ground state band are found to be

ε0 = 7a
(

29
4

− 5
2
(δ + λ) + Λ

)
+

1
2

√
a2 + 8P1 +

a

2

√
9 + 4Λ + 8β4

0

+
1
4

√
(a2 + 8P1)(9 + 4Λ + 8β4

0). (22)
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About the values of the von Roos parameters, δ and λ it must be mentioned
that although their presence is essential in the kinetic part of the von Roos Hamil-
tonian, in the PDM framework after the Quesne and Tkachuk equivalence, δ and
λ appeared only in the effective potential and not in the kinetic part. With the
application of the shape invariance condition in the effective potential, a change
in δ and λ automatically renormalizes the parameter values of a and β0. There-
fore for the whole hierarchy we can give a fixed value for δ and λ, as they do not
contribute independently to the energy spectrum. So in Section 5 we set their
value to be δ = λ = 0.

5 Numerical Results

As a first testground of the present method we have used the Xe isotopes shown
in Table 1. Their choice is justified in [1]. It is worth considering here the values
of the parameters in each nucleus.

i) 134Xe and 132Xe are almost pure vibrators. Therefore no need for defor-
mation dependence of the mass exists, the least square fitting leading to a = 0.
Furthermore, no β0 term is needed in the potential, the fitting therefore leading
to β0 = 0, i.e., to pure harmonic behaviour.

ii) In the next two isotopes (130Xe and 128Xe) the need to depart from the
pure harmonic oscillator becomes clear, the fitting leading therefore to nonzero
β0 values. However, there is still no need of dependence of the mass on the
deformation, the fitting still leading to a = 0. Even if we have a finite value
for the β0, the mass is not yet position dependent. But in 126Xe, for the same

Table 1. Comparison of theoretical predictions of the γ-unstable Bohr Hamiltonian with
β-dependent mass (with δ = λ = 0) to experimental data [20] of Xe isotopes. The
R4/2 = E(4+

1 )/E(2+
1 ) ratios (indicated as 4/2 in the table), as well as the quasi-β1 and

quasi-γ1 bandheads, normalized to the 2+
1 state and labelled by R0/2 = E(0+

β )/E(2+
1 )

and R2/2 = E(2+
γ )/E(2+

1 ) respectively (indicated as 0/2 and 2/2 in the table), are
shown. n indicates the total number of levels involved in the fit and σ is the quality
measure.

4/2 4/2 0/2 0/2 2/2 2/2 β0 a n σ
exp th exp th exp th

118Xe 2.40 2.32 2.5 2.6 2.8 2.3 1.27 0.103 19 0.319
120Xe 2.47 2.36 2.8 3.4 2.7 2.4 1.51 0.063 23 0.524
122Xe 2.50 2.40 3.5 3.3 2.5 2.4 1.57 0.096 16 0.638
124Xe 2.48 2.36 3.6 3.5 2.4 2.4 1.55 0.051 21 0.554
126Xe 2.42 2.33 3.4 3.1 2.3 2.3 1.42 0.064 16 0.584
128Xe 2.33 2.27 3.6 3.5 2.2 2.3 1.42 0.000 12 0.431
130Xe 2.25 2.21 3.3 3.1 2.1 2.2 1.27 0.000 11 0.347
132Xe 2.16 2.00 2.8 2.0 1.9 2.0 0.00 0.000 7 0.467
134Xe 2.04 2.00 1.9 2.0 1.9 2.0 0.00 0.000 7 0.685
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value of β0 as in 128Xe, the mass is position dependent. These three nuclei
(130Xe, 128Xe, and 126Xe) seem to be good candidates for the examination of the
behavior of the mass during the phase transition from a spherical to a γ-unstable
behavior. What is illustrated here is the changes of the effective potential and
the PDM during tiny changes of the deformation.

iii) Beyond 126Xe both the β0 term in the potential and the deformation
dependence of the mass become necessary, leading to nonzero values of both β0

and a.

6 Introduction to the Tensor Generalization

For a Hamiltonian that describes the dynamics of a system in a curved space, the
Poisson brackets take the form,

[xμ, pν ] = gμν , (23)

with gμν being the metric tensor of the underlying space. The quantization of the
above phase space can be immediately obtained, as for instance is stated in [21],
by the commutation relations

[xμ, pν ] = i�gμν . (24)

In a generalized Riemmannian manifold as can be found in [22], an inverted
metric (Θμν)−1 is equal to the double commutator

(Θμν)−1 = [Q2μ, [H,Q2ν ]] = −[[H,Q2μ], Q2ν ]. (25)

In [11] it is shown that this double commutator is an inverted mass tensor.
In addition, based on experimental data, its existence in the Bohr Hamiltonian is
proved. Therefore, the commutation relations for the quadrupole degree of free-
dom a2μ and its generalized momenta π2μ should be generalized to the tensor
form

[α2μ, π2ν ] = i�Θμν . (26)

7 Conclusion

Based on the classical limit of the IBM and on the approach of a non constant
mass coefficient in the Bohr Hamiltonian, a PDM Bohr Hamiltonian is obtained.
Its application to γ-unstable nuclei gives encouranging results. Furthermore, the
mass behavior during the transition from the spherical to the γ-unstable case
seems to be promising. In general, the mass tensor in the Bohr Hamiltonian
signals the deformation of the canonical quantization of the liquid drop and this
is in line with the results of the classical limit of the IBM.
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