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Abstract. An extended SU(3) shell model that for the first time explicitly in-
cludes unique-parity levels is introduced. Its relevance is established by calcu-
lations with a realistic interaction performed for a group of upper fp-shell nuclei
where valence nucleons beyond the N=28=Z core occupy levels of the normal
parity upper-fp shell (f5/2, p3/2, p1/2) and the unique parity g9/2 intruder con-
figuration. The levels of the upper fp-shell are handled within the framework
of an m-scheme basis as well as its pseudo-SU(3) counterpart, and respectively,
the g9/2 as a single level and as a member for the complete gds shell. More
detailed analyses are done for the waiting-point nuclei of 64Ge and 68Se which
demonstrate that the extended SU(3) approach allows one to better probe the
effects of deformation and to account for many key properties of the system by
using a highly-truncated model space. The model holds promise to be useful
for the rare-earth domain as well where many previous results can and will be
complemented, revised and improved.

1 Introduction

Intruder levels are present in heavy deformed nuclei where the strong spin-orbit
interaction destroys the underlying harmonic oscillator symmetry of the nuclear
mean-field potential. The role they play for the overall dynamics of the system
has been the topic of many questions and debates [1–4]. Until now, the prob-
lem has been either approached within the framework of a truncation-free toy
model [1] or by just considering the role of the single intruder level detached
from its like-parity partners [2, 3]. It was argued in [1] that particles in these
levels contribute in a complementary way to building the collectivity in nuclei.
However, some mean-field theories suggest that these particles play the domi-
nant role in inducing deformation [4]. In order to build a complete shell-model
theory, these levels need to be included in the model space especially if experi-
mentally observed high-spin or opposite-parity states are to be described.

Until recently, SU(3) shell-model calculations - real SU(3) [5] for light nu-
clei and pseudo-SU(3) [6] for heavy nuclei - have been performed in either only
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one space (protons and neutrons filling the same shell, e.g. the ds shell) or two
spaces (protons and neutrons filling different shells, e.g. for rare-earth and ac-
tinide nuclei). Various results for low-energy features, like energy spectra and
electromagnetic transition strengths, have been published over the years [7–9].
These applications confirm that the SU(3) model works well for light nuclei and
the pseudo-SU(3) scheme, under an appropriate set of assumptions, for rare-
earth and actinide species. Up to now, SU(3)-based methodologies have not
been applied to nuclei with mass numbers A = 56 to A = 100, which is an
intermediate region where conventional wisdom suggests the break down of the
assumptions that underpin their use in the other domains. In particular, the g9/2
intruder level that penetrates down from the shell above due to the strong spin-
orbit splitting appears to be as spectroscopically relevant to the overall dynamics
as the normal-parity f5/2, p3/2, p1/2 levels. Specifically, in this region the effect
of the intruder level cannot be ignored or mimicked through a “renormalization”
of the normal-parity dynamics which is how it has been handled to date.

We introduce and establish the benefits of a new and extended SU(3) shell
model which, for the first time, explicitly includes particles from the complete
unique-parity sector and therefore can be used to explore the role that intruder
levels play in the dynamics of the system. Calculations are performed for two
nuclei which are of major importance in astrophysics, namely, the waiting-point
N = Z nuclei 64Ge and 68Se [10]. In addition, 68Se is known to be among the
nuclei for which shape coexistence effects have been reported [11,12]. Both the
strengths and the limitations of the model are demonstrated and discussed.

2 A Reasonable Approach for the Description of Upper fp-Shell
Nuclei

To benchmark the benefit of the SU(3) scheme in this region (pseudo-SU(3)
for the upper-fp shell and normal SU(3) for the g9/2 configurations extended
to the full gds shell), we first generated results in a standard m-scheme rep-
resentation [13] for both nuclei, 64Ge and 68Se, with the 8 (4 protons + 4 neu-
trons) and 12 (6 protons + 6 neutrons) valence nucleons, respectively, distributed
across the p1/2, p3/2, f5/2, g9/2 model space with the f7/2 level considered to be
fully occupied and part of a 56Ni core. The Hamiltonian we used is a G-matrix
with a phenomenologically adjusted monopole part [14, 15] that in many cases
describes the experimental energies reasonably well. Specifically, this upper-
fp+ g9/2 shell interaction was succesfully used in the past to obtain quite good
results for nuclei like 62Ga [16], and 76Ge and 82Se [14]. Later, it was applied
for exploring the pseudo-SU(4) symmetry in the region from the beginning of
the upper fp-shell up to N = 30 and for describing beta decays [17].

Calculations with different cuts of the full model space were done in or-
der to estimate the occupancy of the single-particle levels and thus to evaluate
the relative importance of various configurations for describing essential nuclear
characteristics. In Figure 1, a comparison is made between the occupancies for
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Figure 1. Single-particle occupation numbers for eigenstates of the g.s. band of 64Ge
(calculated in different restricted model spaces (from (a) to (e)) and the full space (f))
and 68Se in a restricted model space (g). The labels TPN over each restricted-space
calculation represent the maximum total number of particles T, and the maximum number
of protons P (and neutrons N) allowed in the intruder g9/2 level.

64Ge and 68Se as determined in various restricted spaces, where different num-
ber of particles are allowed in the g9/2 level and the full-space resuls. The upper
(yellow) bars show the contribution to occupations from basis states with an oc-
cupied intruder level while the lower (blue) portion represents those where the
intruder level is empty. The calculated results suggest that the occupancy proba-
bility for the intruder level is approximately 0.3 particles for the low-lying states
of both 64Ge and 68Se. Calculations with no particles allowed in the intruder
level or with just one identical-particle (or proton-neutron) pair (Figure 1 (a)
and (b)) cannot describe either its occupancy or the gradual change in the occu-
pancy of the single-particle levels in the ground-state (g.s.) band that is found
in the full-model-space results. However, using a restricted space with at most
two identical particles occupying the intruder level (in Figures 1(e) and (g)) is
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Figure 2. Pseudo-SU(3) content of the low-lying states in (a) the g.s. band of 64Ge, (b)
and (c) - the K = 2+ band of 64Ge, and (d) the g.s. band of 68Se using the renormalized
counterpart of the G-matrix realistic interaction.

sufficient to describe both features as well as the low-energy spectrum and the
B(E2) transition strengths [18]. Similar results were observed for the K = 2+

band of this nucleus. Calculations for 68Se performed in a truncated basis with
at most 2 nucleons allowed in the intruder level produce a slighlty higher value
of the g9/2 occupancy compared to 64Ge as can be seen in Figure 1 (g).

Next, the goodness of the pseudo-SU(3) symmetry in these nuclei was tested
using a renormalized version of the same realistic interaction in the pf5/2 space
[14]. The matrix of the second-order Casimir operator of pseudo-SU(3), C2 =
1
4 (3L̂2 + Q.Q), was generated and the method of moments [19] used to diago-
nalize this matrix by starting the Lanzcos procedure with specific eigenvectors
of the Hamiltonian for which a pseudo-SU(3) decomposition was desired.

The distribution of the second order Casimir operator C2 of pseudo-SU(3)
yields contributions of about 50-60% from the leading pseudo-SU(3) irrep in the
g.s. band of 64Ge (Figure 2(a)) which suggests that the pseudo-SU(3) symmetry
is quite good. In the K = 2+ band (Figure 2 (c) and (d)) this contribution
appears to be somewhat lower, ranging from approximately 37% for the 8+

2 state
to about 62% in the 3+

1 state. The analysis also reveals that using only five irreps
which have the highest C2 value one may take account of at least 70% and up to
about 95% of the wavefunction for the states in these bands.

In the case of 68Se, the outcome turns out to be quite similar for the states
from the g.s. band (Figure 2(b)). Although the irreps with the maximal value
of C2 = 180 participate with only between about 40% and 50%, the first eleven
irreps with distinct values of λ and μ account for 88-93% of the wavefunction.
In addition, the 0+

3 state at 2.51 MeV is also dominated (64%) by irreps with the
biggest C2 value. However, other states are predicted to be highly-mixed SU(3)
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configurations. This includes the 0+
2 state found at 1.05 MeV – a value very

similar to the ones reported in [11, 12] for a low-lying state of prolate shape. A
recent analysis reveales that many low-lying states in other N ∼ Z nuclei also
have good pseudo-SU(3) symmetry which further underscores the value of using
symmetry-based truncation schemes [18].

3 An Extended SU(3) Model with Explicitly Included Intruder
Levels

Following the series of arguments and motivations presented in the previous
section, we can now introduce the basics of the extended SU(3) shell model.
Like its early precursors [5, 6], it is also a microscopic theory in the sense that
both SU(3) generators - the angular momentum (Lμ, μ = 0,±1) and quadrupole
(Qμ;μ = 0,±1,±2) operators – are given in terms of individual nucleon coor-
dinate and momentum variables. However, the model space has a more compli-
cated structure than the one used in earlier models based on the SU(3) symmetry.
Specifically, it consists of two parts for each particle type, a normal (N) parity
pseudo-shell (f5/2, p3/2, p1/2 → d̃5/2, d̃3/2, s̃1/2) and a unique (or abnormal)
(U) parity shell composed of all levels of opposite parity from the gds shell
above.

The many-particle basis states

|{aπ; aν}ρ(λ, μ)κL, {Sπ, Sν}S;JM〉 (1)

are built as SU(3) proton (π) and neutron (ν) coupled configurations with well-
defined particle number and good total angular momentum. Here, the proton
and neutron quantum numbers are indicated by aσ = {aσN , aσU}ρσ(λσ, μσ),
where the aστ = Nστ [fστ ]αστ (λστ , μστ ) are the basis-state labels for the four
spaces in the model (σ stands for π or ν, and τ stands for N or U). In the last ex-
pression, Nστ denotes the number of particles in the corresponding space, [fστ ]
- the spatial symmetry label and (λστ , μστ ) - the SU(3) irrep label. Multiplic-
ity indices αστ and ρσ count different occurences of (λστ , μστ ) in [fστ ] and in
the product {(λσN , μσN ) × (λσU , μσU )} → (λσ, μσ), respectively. First, the
particles from the normal and the unique spaces are coupled for both protons
and neutrons. Then, the resulting proton and neutron irreps are coupled to a to-
tal final set of irreps. The total angular momentum J results from the coupling
of the total orbital angular momentum L with the total spin S. The ρ and κ
are, respectively, the multiplicity indices for the different occurences of (λ, μ) in
{(λπ, μπ) × (λν , μν)} and L in (λ, μ).

The Hamiltonian

H =
∑

σ,τ

(Hστ
sp −GSστ†Sστ ) − χ

2
: Q.Q : +aJ2 + bK2

J

− G(
∑

σ,τ 
=τ ′
Sστ†Sστ

′
+
∑

τ,τ ′
Sπν,τ†Sπν,τ

′
) (2)
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includes spherical Nilsson single-particle energies as well as the quadrupole-
quadrupole and pairing interactions (within a shell and between shells) plus two
rotor-like terms that are diagonal in the SU(3) basis. In first approximation, the
quadrupole operator in the normal-parity spaces is related to its pseudo counter-
part by QσN ≈ η̃+1

η̃ Q̃σN with η̃ equal to 2 for both protons and neutrons and

Q = QπN +QπU +QνN +QνU ≈ 1.5 Q̃πN +QπU + 1.5 Q̃νN +QνU .
The second line in Eq.(2) consists of pairing terms that are included for the

first time in SU(3) shell-model calculations. In particular, the first term repre-
sents the scattering of an identical-particle pair between the normal- and unique-
parity spaces. The second one stands for the proton-neutron pairing (or simply
pn-pairing) interaction within the normal- or unique-parity space (terms with
τ = τ ′) and for the pn-pair scattering between the normal- and unique-parity
spaces (terms with τ �= τ ′). Finally, the two rotor-like terms J2 and K2

J (the
square of the total angular momentum and its projection on the intrinsic body-
fixed axis) are used to “fine tune” the energy spectra, adjusting the moment of
inertia of the g.s. band and the position of the K = 2+ bandhead, respectively.
Their strengths are the only two parameters fitted in this work.

The single-particle terms together with the proton, neutron and proton-neutron
pairing interactions mix the SU(3) basis states, which allows for a realistic de-
scription of the energy spectra of the nuclei. The single-particle energies in the
Hamiltonian for the normal spaces are fixed with the numbers provided by the
upper-fp shell single-particle energies and for the strengths in the unique-parity
spaces the numbers from systematics are used [20]. The values for the param-
eters G and χ in the Hamiltonian which are taken from [21] are found to be
in agreement with the ones [20, 22] used in previous calculations for some ds-
shell and rare-earth nuclei. For simplicity, we take both identical-particle and
proton-neutron pairing strengths to be equal.

4 Results and Discussion

Calculations within the framework of the extended SU(3) model were performed
using irreps from 5 types of configurations - for example, [NπN , NπU ;NνN , NνU ]
= [4, 0; 4, 0], [4, 0; 2, 2], [2, 2; 4, 0], [3, 1; 3, 1] and [2, 2; 2, 2] for the 64Ge case.
For each of these groups, irreps in the proton and neutron spaces with (pseudo-)
spin Sστ = 0, 1/2, 1 and 3/2 in both the normal- and the unique-parity spaces
were generated. Then, from all the possible couplings between these we chose
those with the largest value of the second order Casimir operator of SU(3) and
spin S = 0, 1 and 2. Here, we present results obtained with five (seven) coupled
proton-neutron irreps with distinct values of λ and μ for each distribution of par-
ticles between the normal and unique spaces for 64Ge (68Se). (This number was
even pushed up to eleven for the [6,0;6,0] configuration in 68Se). The complete
set consists of 492 (580) coupled irreps in the case of 64Ge (68Se).

For both 64Ge and 68Se, proton-neutron configurations with no particles
in the unique space are found, as expected, to lie lowest and determine, by-
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Figure 3. Low-energy spectra of 64Ge obtained with (from left to right) the realistic
interaction in the full pf5/2g9/2 and pf5/2 model spaces compared with experiment [23]
and the extended-SU(3)- and the pseudo-SU(3)-model results.

and-large, the structure of the low-lying eigenstates. Only a small portion of
all proton-neutron coupled irreps - 27 (112) in the case of 64Ge (68Se) - be-
long to these types of configurations, which we will refer to as the dominant
ones. Since the only possible irrep in the unique-parity spaces for this case is
(λπU , μπU ) = (0, 0) (and (λνU , μνU ) = (0, 0)), these configurations are the
exact pseudo analog of the ones encountered in the ds-shell nuclei 24Mg and
28Si which have been studied earlier [7]. Using only the principal part of the
Hamiltonian (2), namely, the part with both rotor term strengths equal to zero,
we are able to provide a good description of the low-lying states. Specifically,
all the energies from the g.s. bands (with the exception of the 2+

1 state in 68Se)
differ by no more than 15% from the experimental values [23]. In order to con-
form with this result and prevent any further changes in the structure of the wave
function, the range of values for the parameters a and b were severely restricted
so that these terms only introduce small (“fine tuning”) changes to the overall
fit.

Results for the excitation spectra of 64Ge are presented in Figure 3. The
realistic G-matrix interaction gives a reasonable result for the low-lying states
consistent with the one obtained in [11,21]. Moreover, a description of a similar
quality is provided by the extended SU(3) model. The existence of two prolate
bands, as predicted by the calculations with the realistic interactions, is also ob-
served, that is, a g.s. K = 0+ and an excited K = 2+ band, both dominated by
the (8, 4) irrep. The first excited 0+ (0+

2 ) state, not reported yet experimentally,
is found at 2.39 MeV which is higher than the prediction made by the realis-
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Figure 4. Low-energy spectra of 68Se obtained with (from left to right) the realistic
interaction in the restricted pf5/2g9/2 (at most 2 particles allowed in the intruder g9/2

level) and full pf5/2 model spaces compared with experiment [23], the extended-SU(3)-
and the pseudo-SU(3)-model results.

tic interactions. Result from the pseudo-SU(3) model, shown also in the figure,
does not seem to differ signifficantly.

A slight change in the type of Hamiltonian used helps us establish the transi-
tion from states of prolate shape dominated by the irrep (12,0) in the g.s. band to
ones where the (0,12) irrep prevails. To achieve this effect we need to add a term
proportional to the third order Casimir invariantC3 of SU(3). It was demostrated
earlier [7] that this term is capable of adjusting the prolate-oblate band crossing
by driving irreps with μ >> λ lower in energy than those with λ >> μ. The
same term can also be used to fix the position of the first excited 0+ (0+

2 ) state
not assigned yet experimentally but predicted by our G-matrix calculations to lie
at 1.05 MeV.

Consistent with the outcome for 64Ge, in the case of 68Se we found a reason-
able description for the energies of the states from the g.s. band (Figure 4). Even
the use of a restricted space with at most 2 nucleons allowed in the intruder g9/2
level produces result which reflects some basic characterisics of the full-space
spectrum reported in [11]. For example, the first excited 0+ state (0+

2 ) is also
positioned below the 2+

2 state. A new feature observed in our results is that the
0+
3 state at 2.51 MeV was found to be dominated by the shapes with C2 = 180.

Within the framework of the extended SU(3) shell model, 68Se is a mid-shell nu-
cleus, a fact which may explain the shape coexistence effects. Unlike the case of
28Si [7], now the g.s. band is dominated by the irrep (12, 0), if the C3 term is not
included in the Hamiltonian. This result, which corresponds to a prolate shape
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mainly follows due to the role of the orbit-orbit terms. If C3 is included then
we obtain result dominated by the irrep (0, 12) which is in agreement with some
earlier discussions [24, 25]. Because of the nature of the leading representation,
the model can not easily account for a K = 2+ band with the same shape char-
acteristic, neither can it give a simple explanation for a low-lying K = 0+ band,
facts which are in support of the realistic prediction made for a highly-mixed
nature of the 0+

2 as well as some other low-lying states in this nucleus.
Electromagnetic transition strengths are normally calculated with the E2

transition operator of the form [3, 26]:

T (E2) ≈
√

5/16πA1/3(eπ
η̃π + 1
ηπ

Q̃πN + eπQπU

+ eν
η̃ν + 1
ην

Q̃νN + eνQνU ) (3)

Instead, in this work we simply used the single dominant component in the
pseudo-SU(3) expansion of the quadrupole operators in the normal-parity space.
The effective charges eπ and eν were taken as eπ = 1.5 and eν = 0.5 for the
two versions of the realistic interaction and the extended-SU(3) calculations.
The overall agreement between the results for both nuclei (see Table 1) is good,
although some recent experimental findings for the 2+

g.s. → 0+
g.s. transition

strength in 64Ge [27] seem to be underestimated by approximately a factor of
1.4. The correct behavior of the interband transitions is also nicely reproduced.
More significant deviations are observed for the transitions between members of
the K = 2+ band and the (J + 1)+ → J+ transitions in 64Ge. These could be

Table 1. Intraband B(E2) transition strengths for 64Ge and 68Se in units of e2fm4 cal-
culated using the G-matrix interaction in full pf5/2 and pf5/2g9/2 model spaces, and
the extended SU(3) model. Entries in parentheses show the result when only the normal
spaces are used in the calculations.

(J + 2)+ → J+ pf5/2 pf5/2g9/2 Ext. SU(3) Exp [27]

2+
g.s. → 0+

g.s. 257.22 253.91 292.80 (280.10) 410(60)
4+

g.s. → 2+
g.s. 332.54 342.51 346.26 (334.10) —

6+
g.s. → 4+

g.s. 340.51 356.92 380.39 (370.56) —
8+

g.s. → 6+
g.s. 303.31 320.14 273.84 (268.08) —

4+
γ → 2+

γ 89.26 93.13 67.25 (65.73) —
6+

γ → 4+
γ 164.23 144.19 207.18 (204.78) —

8+
γ → 6+

γ 92.12 84.38 74.79 (79.39) —
(J + 2)+ → J+ pf5/2 pf5/2g9/2 Ext. SU(3) Exp

2+
g.s. → 0+

g.s. 322.71 314.66 354.17 (346.37) —
4+

g.s. → 2+
g.s. 448.07 440.68 486.65 (477.18) —

6+
g.s. → 4+

g.s. 441.58 435.77 473.89 (467.09) —
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Figure 5. Model-space dimensions for calculations in the full pf5/2g9/2 space for 64Ge
and 68Se as well as for the full pf5/2 spaces and for the extended SU(3) shell model.

attributed to the fact that some of the states from this band (e.g. 4+
2 and 6+

2 ) are
found to be highly mixed with S = 1 irreps and differ more significantly from
the rest thus displaying a less regular structure pattern throughout the band, for
example, to what has been observed in the same bands of some rare-earth nu-
clei. Results when only the normal-parity spaces are included in the calculation
(shown in parentheses) reveal a contribution of the unique-parity sector of only
up to 2-3%. An increase in this number is expected for higher-lying states or
heavier nuclei where the dominant configurations are the ones with an occupied
unique-parity space.

The content of the eigenstates from the g.s. (K = 0+) band of 64Ge shows
dominance of the leading and most deformed SU(3) irrep (8, 4) which gradually
declines throughout the band from about 80% for J = 0+

g.s. to less than 40% for
J = 8+

1 . Since the spin-orbit interaction is not as strong as in the case of the
ds-shell nuclei, the mixing of irreps is smaller compared to the corresponding
normal-SU(3) results for 24Mg and 28Si [7]. In the case of 68Se, the leading
irrep (0, 12) contributes from 75 to 85% throughout the g.s. band.

Although the extended-SU(3) calculations are performed in a model space
that involves the whole gds shell, the basis is still much smaller in size even
compared with the one used for realistic calculations in the pf5/2g9/2 space.
This drastic reduction translates into the use of only hundreds or at most a few
thousand basis states (Figure 5). For example, the size of the basis used in the
extended-SU(3) calculations for 64Ge represents only between 0.02% to 0.3% of
that for unrestricted calculations in the pf5/2g9/2 model space. This means that
a space spanned by a set of extended-SU(3) basis states may be computationally
manageable beyond the limit accessible for the modern full-space shell-model
calculations as is the case for the combination of the upper-fp and the gds shells.
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5 Conclusion

We extended the usual pseudo-SU(3) shell model for upper-fp shell nuclei in two
ways: firstly by integrating the g9/2 level into the dynamics; and secondly by in-
cluding the entire gds-shell organized via its SU(3) structure, which we dubbed
the extended SU(3) shell model. While this work only deals with the simplest
case in which one configuration (the one with no particles in the unique-parity
space) dominates all others, it is still possible to appreciate the strength of this
new approach. Specifically, the model offers a richer model space compared
to the previous SU(3) schemes by taking particles from the unique-parity space
explicitly into account. As a result, the current approach presents an opportunity
for a better description of the collectivity properties of the systems considered
by reducing the effective charge needed in the description of their B(E2) transi-
tion strengths. These results will be even more pronounced for heavier systems
where the intruder space is expected to have higher occupancy. This approach
also offers an opportunity to explore the role of the intruder levels in the dynam-
ics of the system as in the current study they are treated on the same footing as
the normal-parity orbitals. It is important to underscore that these advantages
are accomplished within a highly truncated and symmetry-adapted basis, which
possibly allows one to reach into otherwise computationally challenging (if not
inaccessible) domains.

The results for the nuclei 64Ge and 68Se demonstrate a close reproduction
of various results obtained with a realistic interation. Specifically, many of the
states in the energy spectra and the B(E2) transition strengths are nicely repro-
duced. While the results are satisfactory for the states from the g.s. bands, there
still seem to be some need for a more precise description of the nuclear charac-
teristics related to the properties of the eigenfunctions. These could be addressed
in the future by including some corrections with the use of more elaborated in-
teractions. Nevertheless, the results certainly suggest that the extended SU(3)
model can be a valuable tool in studying properties of nuclei of special interest
from this region, such as those lying close to the proton drip line or/and actively
participating in the processes of nucleosynthesys. They also point to an excel-
lent opportunity to reveal the role the intruder levels play in the dynamics of the
system in an exciting and completely new way, namely, considering their con-
nection to their like-parity partners within the framework of a severely-truncated
symmetry-adapted model space.
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