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Abstract. A particle-plus-rotor Hamiltonian with Coriolis interaction is treated
by the contact transformation method. The transformed Hamiltonian is diago-
nal in the space of the adiabatic rotation functions of a system with separated
collective and single particle motion. The obtained energy expression contains
terms which mix rotational bands built on single particle states with different
values of the third angular momentum projection K. The approach is applied
for a description of the ground-state and first excited rotation bands in the nuclei
183W and 181Hf. Very good agreement between theoretical and experimental
data is achieved.

1 Introduction

Rotation spectra of many deformed nuclei suggest an interplay between collec-
tive and single particle degrees of freedom, as well as, between the rotation and
vibration motions [1]. Usually, there is a discrepancy between the experimen-
tal rotation spectrum of a given nucleus and the levels of the rigid rotor. It is
partially caused by the Coriolis coupling of the single particle motion to the
collective rotation. In the present work, we propose an approach to take into
account the Coriolis interaction in odd nuclei with axial and reflection symmet-
ric shapes. The formalism is derived in the framework of the rotor plus particle
model, in which the Coriolis interaction is included. It is well known that for
axially symmetric nuclei the third projections of the total and single particle an-
gular momenta along the symmetry axis are good quantum numbers with equal
values, denoted byK. The Coriolis interaction mixes states with different values
of K. For the bands with K = 1/2 the main contribution of the Coriolis term to
the collective energies is diagonal. However, if only the diagonal term is consid-
ered the theoretical energy levels systematically appear below the experimental
data, especially at high angular momenta. The reason for this deviation is that
the band-mixing interaction is neglected [2].

The aim of the present work is to properly take into account the Coriolis
mixing effects in rotation spectra of odd mass nuclei. The approach is based
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on the contact transformation method [3] which is widely used in molecular
physics [4]. Some recent considerations in nuclear rotation spectra have also
been done [5, 6].

In the next section, the basic frame of the particle plus rotor model with the
Coriolis interaction is given. In section 3, the contact transformation approach
is given. In section 4, an application of the approach is presented. Some con-
cluding remarks are given in section 5.

2 The Rotor Plus Particle Model

The rotation properties of odd nuclei with axial and reflection symmetric shapes
are investigated in the framework of the rotor plus particle model [1]. The most
general form of the Hamiltonian is

Ĥ = Ĥp + Ĥrot + Ĥ(c), (1)

where Ĥp is the single particle Hamiltonian, Ĥrot is the pure rotation part and
Ĥ(c) is the Coriolis coupling term. The last term represents the interaction be-
tween the particle motion and the core rotation. Hamiltonian (1) can be written
in more explicit form through the angular momentum operators

Ĥ = Ĥp +
�

2

2� (Î2 − Î2
z′ − ĵ2z′) +

�
2

2� ĵ2 − �
2

2� (ĵ+Î− + ĵ−Î+). (2)

When the Coriolis interaction is neglected, the remaining expression is

Ĥ(0) = Ĥp + Ĥrot. (3)

In this case, the rotation and single particle motion are fully separated. As men-
tioned in the Introduction, because of the axial symmetry of H(0), the angular
momentum projections Iz′ and jz′ , usually denoted by K and Ω, are good quan-
tum numbers and their values are equal K = Ω. Thus, the eigenfunctions of
H(0) can be written in the form

ψK = N (
DI
M,KχK + (−1)I+KDI

M,−KRχK
)
, (4)

where χK is the single particle wave function characterized by the quantum
number K. The wave function is symmetrized with respect to the rotation R of
the system on angle π about the y-axis in order to take into account the reflection
symmetry of the system. Thus, the energy spectrum is given by

E(I) = εp(K) +
�

2

2� (I(I + 1) − 2K2), (5)

where εp(K) is the energy of the particle in the state χK , and the other part is
the energy of a rigid rotor with a moment of inertia �.
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We consider that in the full Hamiltonian Ĥ , the Coriolis coupling term Ĥ(c)

is a perturbation to Ĥ(0). The Coriolis term Ĥ(c) is not diagonal with respect
to the basis determined by the eigenfunctions (4) of Ĥ(0). As a result the total
Hamiltonian is also not diagonal. However, its eigenfunctions can be expanded
in this basis space

Ψτ =
∑

K

CτKψK , (6)

where the sum, runs over the quantum numbers K of the basis functions. Then,
the eigenequation

ĤΨτ = EτΨτ , (7)

turns into a linear system of equations
∑

K′=1

(HKK′ − EτδKK′)CτK′ = 0, (8)

whose solutions are the energies Eτ and the coefficients CτK in (6). The number
of equations and the summation range in (8) are determined by the number of
the taken basis functions. We should mention that the basis must not necessarily
be complete. The so obtained eigenfunctions are the best approximation to the
exact eigenfunctions of (1) in the chosen basis [7]. This is the well known direct
diagonalization procedure.

The mixing of the wave functions (4) with differentK values, physically cor-
responds to a situation in which the Coriolis interaction mixes different rotation
bands. The effects of mixing are usually accounted by the theory of perturba-
tion or by the direct diagonalization. Here, we propose a different approach for
description based on the contact transformation method.

3 Contact Transformation and Diagonalization of Coriolis Interac-
tion

The idea of the contact transformation method is to find an unitary operator
U whose action on the full Hamiltonian Ĥ brings it into a form diagonal with
respect to the basis functions ψK [3,4]. If such a transformation is applied to Ĥ
and to its eigenfunctions

UĤU† ≡ Ĥ ′, UΨτ ≡ ψK , (9)

equation (7) transforms into the equivalent form

Ĥ ′ψK = EτψK . (10)

Apparently, the sets of eigenvalues of the Hamiltonians (7) and (10) are the
same. Therefore any eigenvalue Eτ of Ĥ in (7) corresponds to one eigenvalue
of Ĥ ′ in (10) which is now characterized by the quantum number K of the basis
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function ψK . Then one can formally write Eτ ≡ EKτ . The eigenfunctions (6)
of the original Hamiltonian (1) are determined by Ψτ = U−1ψK .

The contact transformation method gives a simple prescription, how to de-
termine the transformation operator U . The unitary transformation can be de-
composed into a chain of successive unitary transformations eT̂i , i = 1, 2, . . .

Ĥ ′ ≡ . . . eT̂2eT̂1Ĥe−T̂1e−T̂2 . . . , (11)

where the operators T̂i are anti-hermitian. The aim is to eliminate step by step
the non-diagonal terms of the transformed operator by properly choosing the
operators T̂i. After expanding the exponents in (11), the transformed operator
Ĥ ′ can be written as a sum of n-fold commutators of the initial Hamiltonian and
the operators Tn

Ĥ ′ = Ĥ(0) + Ĥ(c) + [T̂1, Ĥ
(0)] + [T̂1, Ĥ

(c)]

+
1
2!

[T̂1, [T̂1, Ĥ
(0)]] + [T̂2, Ĥ

(0)] + . . . . (12)

Here, the expansion is given up to the terms which contribute to the diagonal
part of Ĥ ′ after the first two transformations. The same expression appears in a
matrix form as

H ′
KK′ = H

(0)
KK′ +H

(c)
KK′ +

∑

P

(T1KPH
(0)
PK′ −H

(0)
KPT1PK′)

+
∑

Q

(T1KQH
(c)
QK′ −H

(c)
KQT1QK′)

+
1
2!

∑

R

(
T1KR

∑

S

(T1RSH
(c)
SK′ −H

(c)
RST1SK′)

−
∑

N

(T1KNH
(c)
NR −H

(c)
KNT1NR)T1RK′

)

+
∑

P

(T2KPH
(0)
PK′ −H

(0)
KPT2PK′) + . . . , (13)

where OKK′ ≡ 〈ψK |Ô|ψK′〉 is the matrix element of a given operator Ô in
the chosen representation ψK . In the first step T̂1 can be defined through the
equality

H
(c)
KK′ = −

∑

P

(T1KPH
(0)
PK′ −H

(0)
KPT1PK′) K �= K ′. (14)

Then, taking into account that H(0)
KP = εKδKP we find

T1KK′ =
H

(c)
KK′

εK − ε′K
K �= K ′. (15)
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The matrix element of the operator T1 for K = K ′ is not defined. In the consid-
ered basis the Coriolis term has an diagonal part H(c)

KK for K = 1/2. Therefore
HKK should be included in εK together with the single particle and the rotation
energies.

εK = εp(K) +
�

2� (I(I + 1) − 2K2) +H
(c)
KKδK 1

2
. (16)

By using (14), the transformed operator Ĥ ′ is obtained in the form

H ′
KK′ = H

(0)
KK′ +H

(c)
KK′δKK′

− 1
2

∑

P

(T1KPH
(c)
PK′ −H

(c)
KPT1PK′) (17)

+
∑

Q

(T2KQH
(0)
QK′ −H

(0)
KQT2QK′) + . . . , (18)

which implies the definition of the second operator T̂2 as
∑

Q

(T2KQH
(0)
QK′ −H

(0)
KQT2QK′) =

1
2

∑

P

(T1KPH
(c)
PK′ −H

(c)
KPT1PK′), K �= K ′. (19)

It is defined so that to eliminate further non-diagonal terms remaining after the
first transformation.

Taking into account equations (15) and (19) and the explicit form of the
operator T1 we have

H̃ ′
KK = H

(0)
KK +H

(c)
KK +

∑

K′ 
=K

H
(c)
KK′H

(c)
K′K

ε′K − εK
. (20)

Then, Eq. (10) can be approximated by

ˆ̃
H ′ψK = ẼKτ ψK , (21)

where
ẼKτ = H̃ ′

KK . (22)

The notations ẼKτ and H̃ ′
KK mean that only some parts of the transformed

Hamiltonian Ĥ ′ is considered.
Equation (20) has the standard form of the energy expression in the regular

theory of perturbation. Although both expressions are identical they are derived
by two approaches based on different assumptions. The theory of perturbation
is based on the assumption that approximate eigenvalues and eigenfunctions can
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be expanded in series with respect to a small parameter [8]. The condition for
convergence requires that every subsequent term in the expansion be smaller
than the previous one. This condition is fulfilled when the perturbation is small.

On the other hand, the contact transformation method allows one to find the
eigenvalues and the eigenfunctions of a given Hamiltonian in a certain basis
without solving the linear system of equations (8). The advantage of the ap-
proach is that the transformation operators do not depend on the strength of the
perturbation. As mentioned in the beginning of the section, the contact trans-
formation method is based on the expansion of exponential operators in series.
Therefore, the accuracy of the method depends on the speed of convergence of
the expansion. If the matrix elements of the operators T̂i are small quantities,
then the expansion can be essentially resumed with a small number of terms. It
is clear, that the unitarity of the operators depends on the order of the expan-
sion and the smallness of the exponential factor. When the factor is small, a
small number of expansion terms is enough to reasonably well approximate the
operator.

4 Application to Coriolis Mixed Rotation Bands

In the present approach, the energy expression of the rotation spectrum of a rotor
plus particle system with axially and reflection symmetric shape can be taken in
accordance to Eqs. (20) and (22) in the form

EKτ (I) = εp(K) +
�

2

2�

[
I(I + 1) − 2K2

− (−1)I+
1
2 δK,1/2

(
I +

1
2

)
〈χK | j+ |RχK〉

]

+ 2
(

�
2

2�
)2

(I −K)(I +K + 1)
∑

K′ 
=K

|〈χK′ | j+ |χK〉|2
εK′ − εK

, (23)

where χK is the wave function of the single particle state on which the rotation
band is built. The first line of the above expression is a sum of the single particle
energy εp and the energy of the pure rotor. The next term is the well known
decoupling energy and the last part represents the contribution of the Coriolis
mixing to the full energy of the system.

The energy expression (23) is applied for description of the ground state and
first excited rotation bands of the nuclei 183W and 181Hf . In both nuclei the
ground state band is built on K = 1/2 single particle state and the excited band
is based on K = 3/2. We assume that, both states are mutually mixed without
interacting to other excited bands. Then, only one term remains in the sum over
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K ′ in (23). The expression for the energy levels of the ground state band reads

E1/2
τ (I) = εp(1/2) +

�
2

2�
[
I(I + 1) − (−1)I+

1
2

(
I +

1
2

)〈
1
2

∣∣∣∣ j+
∣∣∣∣−

1
2

〉]

+ 2
(

�
2

2�
)2 (I − 1

2 )(I + 3
2 )

ε3/2 − ε1/2

∣∣∣∣

〈
3
2

∣∣∣∣ j+
∣∣∣∣
1
2

〉∣∣∣∣
2

, (24)

while the energies of the excited band with K = 3/2 are

E3/2
τ (I) = εp(3/2) +

�
2

2�I(I + 1)

− 2
(

�
2

2�
)2 (I − 3

2 )(I + 5
2 )

ε3/2 − ε1/2

∣∣∣∣

〈
3
2

∣∣∣∣ j+
∣∣∣∣
1
2

〉∣∣∣∣
2

. (25)

In the Figure 1, the energy levels (24) and (25) for the nucleus 183W are com-
pared with the experimental data. For the band with K = 1/2, a theoretical
curve obtained by considering only the rotation plus decoupling part of the en-
ergy (24) without mixing term is given for comparison. It is seen that the effect
of mixing is considerable, especially at the high spin states, where its taking into
account provides a very good agreement between the theory and the experiment.

The present approach depends essentially on two parameters, the inertial pa-
rameter �

2/2� and the quadrupole deformation parameter β2 for the considered
nucleus. Since, we use single particle functions obtained in the framework of

Figure 1. Theoretical and experimental energies [11] of the ground state and excited
rotation bands for the nucleus 183W .
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Figure 2. Theoretical and experimental energies [11] of the ground and excited rotation
bands for the nucleus 181Hf .

the deformed shell model with Wood-Saxon potential [9], the deformation pa-
rameter is related to the single particle potential shape.

The parameters for 183W are as follows: the quadrupole deformation is β2 =
0.25; the inertial parameter is �

2/2� = 12.527 keV for the ground state band
and �

2/2� = 18.122 keV for the excited band . For both bands, the inertial
parameter is fitted with respect to the first three levels of the respective band.

The results for the nucleus 181Hf are depicted in Figure 2. They are similar
to the results for the nucleus 183W , which is not a surprise considering that both
nuclei differ by two protons only. The parameters for 181Hf are slightly differ-
ent, but still very close to the parameters of 183W . The deformation parameter
is β2 = 0.26. For the ground-state and exited bands the inertial parameters are
�

2/2� = 12.348 keV and �
2/2� = 16.620 keV, respectively.

5 Conclusion

In conclusion, the used approach gives a very good agreement between the the-
ory and experiment for the considered nuclei. Although, the effect of the mixing
is not very large, it seems that the formalism takes it into account in a proper way.
We remark that the present results are obtained with the use of two parameters
only.

As mentioned in section 3, the approach is correct if a finite number of terms
in the expansion of the operators eTi can be considered as a good approximation
to the exact form of the operators. This condition is fulfilled if the matrix ele-
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ments of the operators Ti are small. If its value is less than one the convergence
is very fast. For an instance, we verified that the numerical value of the matrix
element of T1, Eq.(15), between the states with K = 3/2 and K = 1/2 at spin
I = 19/2 for the nucleus 183W is 0.59, which is small enough. The present
result corresponds to a physical situation in which the difference between the
single particle energies of the bandheads is larger than the energies between the
first few levels in the rotation spectra [2,10]. This feature characterizes the spec-
tra of W, Hf, Er nuclei, as well as some Ra nuclei.

The present work is a test of the approach. It is seen that, the contact trans-
formation method gives reasonable results even by the use of a few terms in the
expansion (12). It can be used for analysis of the alignment process of the single
particle motion with respect to the collective rotation as well as for a description
of the rotation-vibration motion.
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