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Abstract. We discuss some of the challenges that future nuclear modeling may
face in order to improve the description of the nuclear structure. One challenge
is related to the need for A-body nuclear interactions justified by various con-
temporary nuclear physics studies. Another challenge is related to the discrep-
ancy in the NNN contact interaction parameters for 3He and 3H that suggests the
need for accurate proton and neutron masses in the future precision calculations.

1 Introduction

The high precision, QCD derived, nucleon interaction that describes the NN-
scatering phase shifts, the deuteron, and the light s- and p-shell nuclei points to
the necessity of NNN-interaction terms [1, 2]. Thus the conventional two-body
interaction paradigm is challenged and the need of 3-body and possibly A-body
interaction define a new research frontier. The structure of the three-body terms
has been studied previously using the meson exchange theory [3]. However,
with the advance of the Chiral Perturbation Theory (ChPT) [4, 5] the structure
of the three-body terms is better justified using QCD. While studying the pa-
rameters of the 3-body contact terms [2] one faces a discrepancy in the NNN
contact interaction parameters needed to fit 3He and 3H that could be viewed as
an argument towards implementing the accurate proton and neutron masses in
future precision calculations.

Higher many-body interaction terms (e.g. NNNN-interaction terms) are also
part of the interaction as derived from QCD via ChPT [6]. The Okubo-Lee-
Suzuki (OLS) effective interaction method, employed in solving the nuclear
many-body theory, also introduces interaction terms beyond the common 2-body
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interaction [7, 8]. All this seems to be pointing to the need of A-body interac-
tions for the description of the nuclear structure. It also raises the question about
the importance of the A-body interactions in very heavy nuclei. Fortunately,
there is an exactly solvable A-body model – the extended pairing model – that is
applicable as an A-body interaction to very heavy nuclei; therefore, it can help
to address this question [9–11].

In the next section we briefly discuss the microscopic nuclear physics hamil-
tonian; the types of the high-precision NN-interaction potentials and their failure
to properly account for the structure of the nuclei with more than two nucleons.
In Sec. 3 we discuss the discrepancy in the values of the cD and cE NNN-
intercation parameters [2] and try to argue that the application of high-presision
nucleon potentials needs more appropriate nucleon masses for high-precision
description of the A=3 systems. In Sec. 4 we further extend our argument for
A-body nuclear interactions by using the modern OLS effective interaction in
finite model space method. In Sec. 5 we briefly discuss the well-know 2-body
pairing interaction and its exact solution as a prelude to the A-body Extended
Pairing Interaction (EPI); then we discuss the results of apply the EPI to few
long isotope chains like Sn, Yb, and Pb nuclei. Last section is our conclusion
about the needs of the future nuclear structure modeling.

2 Modeling the Nuclear Interactions

Unlike the electromagnetic and the gravitational intersection, the mathematical
form of the nuclear interaction has been very elusive. It is now clearly under-
stood that this is due to the fact that the nuclear interaction arises nontrivially
from the quark structure of the nucleons and thus related to the theory of the
QCD. However, the absence of a closed form interaction has not hindered re-
searchers from modeling the structure of nuclei. The field has advanced sig-
nificantly, based on general quantum mechanical principals and techniques. In
particular, the microscopic approach has been very successful especially with
the advance of computational techniques and computer power that have allowed
for the construction of effective high-precision meson and/or QCD derived NN-
potentials. The free parameters of the high-presision NN-potentials are usually
fixed by the experimental two-nuceon scattering data and describe the 2-body
system extremely well. Unfortunately, these potentials produce unsatisfactory
description of the 3- and 4-body systems.

2.1 The Nuclear Shell-Model Hamiltonian

A nuclear many-body system near equilibrium can be viewed as subject to a
mean field Harmonic Oscillator (HO) potential: H0 = �p2

2m + 1
2k

2�x2. It is well
know that one can understand the magic numbers and the shell structure of nu-
clei within the 3-dimensional HO approximation plus a spin-orbit potential [12].
Using the HO single-particle states one can write a general Hamiltonian with
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one- and two-body terms:

H =
∑

i

εia
+
i ai +

1
4

∑

i,j,k,l

Vij,kla
+
i a

+
j akal. (1)

Here, ai and a+
j are fermion annihilation and creation operators, εi single-

particle energies, and Vij,kl = 〈ij|V |kl〉 two-body interaction matrix elements
and the index i labels the single particle levels. Despite the significant symmetry
relations, e.g. εjm = εjm′ due to rotational symmetry and Vij,kl = Vkl,ij =
−Vji,kl = −Vij,lk due to the fermion exchange properties and the hermition
requirement on the energy operator, the number of independent parameters is
often more than a dozen - usually it is of order of few hundred for the valence
NN interactions alone. The independent parameters of the interaction (1) are
often fitted to experimental data by starting with some initial values that come
from a relevant theory or model.

2.2 Problems with the High-Precision NN-Potentials

Many of the high-precision NN-potentials commonly used to build the micro-
scopic interactions for multi-nucleon systems have very complicated but me-
thodically developed structure in terms of spin, iso-spin, and angular momentum
components although sometimes there is a very complicated radial dependence.
For example, the Argonne V18 potential has 18 different terms [13]. Other po-
tentials use non-local terms e. g. CD-Bonn [14] and Nijmegen [15]. However,
when applied to A>2 systems all of these potentials have a serious difficulties
that were eventually overcome by using three-body interactions [4, 16, 17].

By the end of the twentieth century it become clear that a two-body in-
teraction by itself is inadequate even for the description of the lightest nuclei
2 < A < 5. Comparative studies of various potentials, such as AV18, Nijmegen,
CD-Bonn, and N3LO, with or without three body terms have demonstrated the
inadequacy of the pure two-body interactions and the need for three-body in-
teraction terms [17, 18]. For example, all these interactions (AV18, Nijmegen,
CD-Bonn, and N3LO) describe very well the deuteron properties such as bind-
ing energy, radius, and quadruple moment but fail by more than 0.5 MeV to
reproduce the binding energy of triton [18] and underbind 4He by more than 4
MeV [17].

Although the meson-exchange approach was successful, it was clear that this
phenomenological models should be derived from the underling QCD. Thus the
ChPT approach became a prominent technique that produced the high-precision
NN-potential N3LO and then guided the researchers into the structure of the
NNN- and NNNN-interactions [6, 18, 19].

3 Light Nuclei and the Parameters of the NNN-body Interaction

The use of the ChPT in the derivation of the nucleon interactions from QCD
assisted in the determination of the mathematical form of various interaction
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terms along with the relevant parameters. Unfortunately, parameters related to
contact terms in the interaction could not be determined. Thus the cD and the
cE strengths of the two-nucleon contact interaction with one-pion exchange to a
third nucleon and the three-nucleon contact interaction are identified freedoms
at the present time in the effective ChPT interaction. As such they need to be
fixed by comparison with experiment.

3.1 Binding Energy of 3H, 3He, and 4He

In order to determine the cD and cE parameters of the interaction one searches
for the parameter values that reproduce the binding energy of 3H and 3He within
0.5 keV of the experimental values [2]. As seen from Figure 1 there are two
cD − cE curves that unfortunately do not intersect. In order to further narrow
down the range of cD values one considers the averaged cD − cE curve and
evaluates the binding energy of the 4He system which results in two possible
physical regions denoted by A and B on inset (a) of Figure 1. Finally, the charge
radius of 4He points to the region A as the reasonable range of values for the cD
parameter while the cE parameter is determined by the averaged cD− cE curve.

Conceptually, there are three important concerns: First, the ChPT NN-potential
was one order higher than the NNN-potential and no NNNN-potential was in-
cluded. That is, the high-precision NN-potential was N3LO (next-to-next-to-

Figure 1. Relations between cD and cE for which the binding energy of 3H (8.482 MeV)
and 3He (7.718 MeV) are reproduced. (a) 4He ground-state energy along the averaged
cD − cE curve. The experimental 4He binding energy (28.296 MeV) is reproduced to
within 0.5 MeV over the entire range depicted. (b) 4He charge radius rc along the
averaged cD−cE curve. Dotted lines represent the rc uncertainty due to the uncertainties
in the proton charge radius.
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next-to-leading order) [18] while the ChPT NNN-potentail was at the N2LO or-
der [19] and the NNNN-potential [6] was not yet readily available. The second
concern is that the range of the 3-body interaction parameter cD is determined
by the properties of the 4-body system 4He; this, however, was resolved by a
later study that used the β− decay of 3H into 3He and confirmed the physically
relevant region A for the parameter cD [20]. The third concern is related to the
fact that these are high-presision studies and at this level of accuracy the dif-
ference between the proton and nucleon mass could be important for the A=3
systems.

3.2 3H and 3He Systems with Modified Nucleon Mass

It is clear from Figure 1 that the cD − cE curves for 3H and 3He do not intersect
in the physically relevant region (−1 < cD < 1). This could be attributed to the
absence of the T=3/2 channel in these first calculations. The slight difference in
the cD value as suggested by 4He binding energy and its charge radius could be
attributed to the inconsistency of the different interaction terms, i.e. NN-terms
are at N3LO level while the NNN-terms are at N2LO level and the NNNN-
terms are not present at all. Another source of these discrepancies could be the
conventional use of equal masses for protons and neutrons. We will discuss this
option in more detail below.

As seen from Figure 2 the binding energy deviation range is 15 < δK < 25
keV within the physically relevant region (−1 < cD < 1). This is within the
accuracy of the kinetic energy K as evaluated for equal mass nucleons m =
mn = mp = (mn + mp)/2. Since the averaged relative kinetic energy for
the three-nucleon system is about K ≈ 37 MeV and the relative nucleon mass
deviation δm/m is ≈ 0.7 × 10−3 with δm = (mn −mp)/2, we have:

K =
m

2
v2 ⇒ δK = K

δm

m
≈ 26 keV (2)

This shows that there is not a single cE value that will result in perfect de-
scription of the 3H and 3He systems. One could hope that including the T=3/2
channel would improve the situation. Alternatively, with this level of precision,
we are led to investigate corrections to the conventional mn = mp approxima-
tion. One can test the sensitivity to the conventionally used nucleon mass by
changing it to a more appropriate value [21].

m =
1
A

(Zmp + (A− Z)mn). (3)

If one repeats the calculations related to Figure 2 but by employing the nu-
cleon mass value as suggested by (3), one obtains an interesting result shown in
Figure 3. From Figure 3 is clear that there are unique cD and cE values where
both binding energies can be reproduced exactly. The cD is in agreement with
the cD value estimated from the charge radius of 4He (see Figure 1(b)). Since,
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Figure 2. Deviation of the binding energy of the three-nucleon systems as computed
along the averaged cD − cE curve.

4He has same number of protons and neutrons, there is no nucleon mass ad-
justment for this system, so results shown for 4He on Figure 1 are still valid.
Perhaps by incorporating NNNN-interaction [6] the binding energy for the 4He
would agree better with the cD value suggested by the three-nucleon system as
calculated with a modified nucleon mass and the β− decay of 3H [20].

Figure 3. Intersecting cD − cE curves where the binding energy of 3H (8.482 MeV) and
3He (7.718 MeV) are reproduced when using modified nucleon mass as suggested by (3).
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4 Beyond the 2-body Interaction – Effective Interactions in a Finite
Model Space

In the previous section we discussed results obtained by using QCD derived in-
teractions and the role of the NNN-interaction in the description of the light nu-
clei. Clearly 3- and 4-body interaction terms are predictions of the ChPT. Thus
A-body interactions can be viewed as real physical interactions within the ChPT
approach to nuclei. However, there is another way to arrive at A-body interac-
tions which are phenomenological effective interactions since they are related to
our inability to handle interacting systems in infinite Hilbert spaces [22]. Since
the quality of a model is judged by its ability to reproduce the experimental data,
as far as computational models are concerned, an A-body interaction which gives
results that agree well with the data is physically relevant as well.

In practice, we are computationally limited to a finite subspace of the infi-
nite Hilbert space of the full quantum many-body problem. The subspace that
we can access is defined by finite set of convenient many-body basis states. For
a suitable choice of basis we hope to have good overlaps with low-lying physical
states of the system under study. If we imagine the exact solutions are available
for analysis and apply a unitary transformation to those eigenstates, we can pro-
duce a transformed set of solutions maximally overlaping with our chosen basis
space.

For example, one may be interested in the lowest two energy states of a sys-
tem, as shown in Figure 4 left, but would like to have some unitarily transformed
version of these states that have maximal overlap with the two basis states that
define the plane of the page (Figure 4 right). By finding the relevant unitary
transformation U, one can define an effective Hamiltonian that would have the
lowest two states as desired. Then this effective Hamiltonian could be used in
the calculations of more complicated multi-particle systems, i.e. one would find
the unitarily transformed Hamiltonian that describes very well the low-energy
states of a 2-body system in a mean field but within a Fock space that would
be used later for an A-body system. Unfortunately, this transformation will turn

Figure 4. Geometrical interpretation of the Okubo-Lee-Suzuki transformation method
for construction of effective Hamiltonian operators.
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any one- and two-body potential into a many-body effective interaction:

1
2

A∑

i
=j
Vij

U=eiS

−−−−→ Veff =
A∑

k=1

1
k!

A∑

i1,··· ,ik
Vi1,··· ,ik

This way the two-body Hamiltonian (1) becomes an A-body Hamiltonian:

H =
∑

i

εia
+
i ai +

A∑

k=2

1
(k!)2

∑

i1,...,ik,

j1,...,jk

Vi1,...,ik,j1,...,jka
+
i1
· · · a+

ik
aj1 · · · ajk . (4)

For A>4, it seems impractical at present to obtain the structure of the A-
body interactions as derived from ChPT as it was previously done for the NNN-
and the NNNN-interaction terms. Before embarking on the extensive undertak-
ing required for including higher-body effective interactions, it would be very
helpful to investigate a simple exactly solvable A-body interaction model that
has few parameters and is applicable to real A-body systems.

5 The Extended Pairing Model

In order to study the relevance of the A-body interactions one should use the
general form of the interaction and to try to determine some of the A-body in-
teraction strengths since it seems impractical at present to be able to obtain the
structure of the A-body interactions from ChPT for A>4. Therefore, as we rea-
soned earlier one needs simple exactly solvable A-body interaction with few pa-
rameters that can be adjusted to the experimental data. Fortunately, there is such
an interaction - the Extended Pairing Interaction (EPI) [9]. The discovery of
this exactly solvable model was a result of research into the solution of the two-
body proton-neutron pairing which turned to be exactly solvable as well [23].
However, for our purpose the justification, of the A-body EPI Hamiltonian, is
the need for simplicity: thus, one can set all the unknown interaction strengths
Vi1,...,ik,j1,...,jk in (4) to be equal to single strength G and to consider only pairs
of fermion particles b+i = a+

i↑a
+
i↓:

H =
∑

i

2εini −G
∑

i,j

b+i bj −
A∑

k=2

G

(k!)2
∑

i1,··· ,i2k

b+i1 · · · b+ikbik+1 · · · bi2k
. (5)

Here ni counts the number of pairs on the i-th level; thus, the value 2 in front
of the single particle energy εi. If one considers a system of only one pair of
particles then the k > 1 terms in (5) disappear since their matrix elements are
zero in the one-pair basis. Thus, one gets the standard pairing Hamiltonian:

HP =
∑

j

2εjnj − g
∑

jj′
A+
j Aj′ , A

+
j =

∑

m>0

a+
jma

+
j−m (6)
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This 2-body Hamiltonian, however, is exactly solvable even for systems with
more than one pair since it can be viewed as Richardson-Gaudin model [24]. For
example, the relevant equations for the proton-neutron T = 1 pairing that were
given in Ref. [23] as well as by Links et al. [25], and Asorey et al. [26] are:

1
g

=
L∑

i=1

Ωi
2εi − vα

+
M∑

β 
=α

2
vα − vβ

+
M−T∑

γ=1

1
wγ − vα

(7)

0 =
M∑

α=1

1
vα − wγ

+
M−T∑

δ 
=γ

1
wγ − wδ

, E =
M∑

α=1

vα.

The spectral parameters vα have the same meaning as pair energies. The wγ pa-
rameters are related to the iso-spin symmetry of the proton-neutron pairing. By
drooping the terms that contain the wγ parameters one arrives at the Richard-
son’s exactly solvable pairing for one type of particles [27]. If one considers
only one pair case (M = 1 = p) in L single particle levels with double degen-
eracy of each single particle level i (Ωi = (2j + 1)/2 = 1) then one has the one
pair energy eigenvalues of the EPI (5) and the standard pairing (6):

E = z,
1
g

=
L∑

i=1

1
2εi − z

.

This is a special case of the (p = 1) solution for the extended pairing model [9]:

Eζp = zζ −G(p− 1),
1
G

=
∑

i1...ip

1
Ei1...ip − zζ

, Ei1...ip =
p∑

n=1

2εin . (8)

In the above equations, we intentionally kept the notation for the 2-body pairing
and the A-body pairing slightly different to emphasize their different structures.

5.1 Binding Energy of the Sn and Pb Isotope Chains

Deformation is common in very heavy nuclei and this often justifies the success
and application of the Nilsson model. For the purpose of our model, we use
deformation parameters from Ref. [28] and experimental binding energies from
Ref. [29]. Theoretical relative binding energies (RBE) are calculated relative to
a specific core, 152Yb, 100Sn, and 208Pb for the cases considered. The RBE of
the nucleus next to the core is used to determine an energy scale for the Nilsson
single-particle energies. For an even number of neutrons, we considered only
pairs of particles. For an odd number of neutrons, we apply Pauli blocking to
the Fermi level of the last unpaired fermion and consider the remaining fermions
as if they are an even fermion system. The valence model-space consists of the
neutron single-particle levels between two closed shells with magic numbers 50-
82 and 82-126. By using (8), values ofG are determined so that the experimental
and theoretical RBE match exactly.
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Figure 5. Binding energies (BE) of the Sn isotopes relative to the BE of 100Sn core.

Here we discuss mostly the Sn isotopes since the Pb and Yb isotopes were
discussed in more details in Ref. [11] and Ref. [10]. In Figure 5 are shown the
results for Sn as calculated by using the 100Sn as core and zero RBE nucleus.
The single-particle energy scale is set by the binding energy of 101Sn. The in-
set shows the fit to values of G that reproduces the experimental data exactly.
The two fitting functions are: ln(G(A)) = 365.0584 − 6.4836A + 0.0284A2

and ln(G(A)) = 398.2277 − 7.0349A + 0.0307A2 for even/odd values of A.
The solid line gives the theoretical RBE of the Sn isotopes using these fitting
functions.

The Sn isotope chain is unique in the sense that there are two doubly magic
members, the 100Sn and 132Sn, that allows us to use 132Sn as zero RBE system as
well. In Figure 6 are shown the results for Sn isotopes when using 132Sn as zero
RBE system. In this case, there are again good even/odd quadratic dependence
of the ln(G(A)), however, as for Pb case [11] there is a simpler expression that
works for even and odd systems simultaneously. In this case we have G(A) =
α dim(A)−β with α = 259.436 and β = 0.9985.

6 Conclusion

In this paper we have presented evidence for the need to use accurate proton and
neutron masses, or at least a properly weighted nucleon mass (3), in order to
improve on the accuracy of the binding energy of light nuclei as computed with
the next generation computer codes. This will also allow better understanding of
the NNN-, NNNN-, and A-body interactions in nuclei either derived from ChPT
or from a phenomenological considerations. Therefore, one has to build A-body
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Figure 6. Binding energy of the Sn isotopes relative to doubly magic 132Sn core.

computational technology in the next generations of nuclear modeling codes.
While the motivation for considering A-body interaction in the light-nuclei

is strong as based on the ChPT QCD derived interactions, one is left to wonder
if A-body interactions are also relevant to heavy nuclei. The results obtained
with the help of the Extended Pairing Interaction, in particular the Sn isotopes
discussed here, seem to confirm the idea that A-body interactions are needed to
understand better the binding energy of heavy nuclei. Often the imagination can-
not capture all the possible implications and uses of an exactly solvable model.
Beside the current applications of the EPI, one can also see that it would be a
useful verification tool for A-body computational codes as well.
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