Clustering in Relativistic Dissociation of ⁹C, ¹⁰C and ¹²N Nuclei

<u>R.Zh. Stanoeva^{1,2}</u>, D.A. Artemenkov², V. Bradnova², R.R. Kattabekov², K.Z. Mamatkulov², S. Vokál³, P.I. Zarubin², I.G. Zarubina², N.K. Kornegrutsa², D.O. Krivenkov², A.I. Malakhov², N.G. Peresadko⁴, N.G. Polukhina⁴, P.A. Rukoyatkin², V.V. Rusakova², M. Haiduc⁵, S.P. Kharlamov⁴

¹South-West University "Neofit Rilski", Blagoevgrad, Bulgaria

²Joint Insitute for Nuclear Research, Dubna, Russia

³P. J. Šafărik University, Košice, Slovak Republic

⁴Lebedev Institute of Physics, Russian Academy of Sciences, Moscow, Russia ⁵Institute of Space Sciences, Magurele, Romania

Abstract. The dissociation features in nuclear track emulsion of ${}^{9}C$, ${}^{10}C$ and ${}^{12}N$ nuclei of 1.2 A GeV energy are presented. Events of coherent dissociation ${}^{9}C \rightarrow 3^{3}$ He associated with the rearrangement of the nucleons outside the α -clustering are identified. A pattern of the charge fragment topology in the dissociation of ${}^{10}C$ and ${}^{12}N$ nuclei is obtained for the first time. Contribution of the unbound nucleus decays to the cascade process ${}^{10}C \rightarrow {}^{9}B \rightarrow {}^{8}Be$ is identified.

1 Introduction

The concepts of baryonic matter in a cold dilute phase with clustering of nucleons in the lightest nuclei ⁴He, ³He, ²H and ³H have been developed in the last decade [1–4]. Theoretical developments carried out in this direction orient towards the study of cluster groups as integral quantum systems and give motivation to a new generation of experiments on cluster spectroscopy [5, 6]. Since the macroscopic cluster states can play the role of an intermediate phase in astrophysical processes, these studies assume the significance going beyond the framework of the nuclear structure problems [7,9].

The use of accelerated nuclei, including radioactive ones, can qualitatively diversify the spectroscopy of cluster systems. Configuration overlap of a fragmenting nucleus with finite cluster states manifested most fully in the dissociation at the periphery of the target nucleus with the transfer of excitation near the cluster binding thresholds. The definition of interactions as peripheral ones is simplified at energy above 1 A GeV due to the collimation of the incident nucleus fragments. The detection thresholds disappear and the fragment energy loses in detector material are minimal. Thus, qualitatively new opportunities appear in the relativistic region for the study of cluster systems as compared with the low energy region.

Preparation of Papers for Heron Press Science Series Books

The method of nuclear track emulsion provides a uniquely complete observation of multiple fragment systems produced in dissociation of relativistic nuclei. Approximate conservation of the initial momentum per nucleon by relativistic fragments is used in the kinematical analysis of the events to compensate the lack of momentum measurements. The fragmenting system excitation can be defined as $Q = M^*$ -M, where M^* is the invariant mass and the projectile mass or total fragment mass. The value M^* is defined by the relation $M^{*2} = (\sum P_j)^2 = \sum (P_i \cdot P_k)$, where $P_{i,k}$ 4-momenta fragments i and the k, determined in the approximation of the conservation of the primary momentum value per nucleon.

The most valuable events of coherent dissociation of nuclei in narrow jets of light and the lightest nuclei with a net charge as in the initial nucleus, occurring without the formation of fragments of the target nuclei and mesons (the so-called "white" stars) [10, 11], comprise a few percent among the observed interactions. The data on this phenomenon are fragmented, and the interpretation is not offered. The dissociation degree of light O, Ne, Mg and Si, and as well as heavy Au, Pb and U nuclei may reach a complete destruction to light and the lightest nuclei and nucleons, resulting in cluster systems of an unprecedented complexity. The dissociation dynamics of heavy nuclei can be grounded on dissociation peculiarities established for light nuclei. An extensive collection of photographs of such interactions is gathered by the BECQUEREL collaboration [12].

Despite the fact that the potential of the relativistic approach to the study of nuclear clustering is recognized long ago, e-experiments were not be able to get closer to the required detailed observation of the relativistic fragment ensembles. The related pause has led to the proposal to irradiate nuclear track emulsion in the JINR Nuclotron beams of the whole family of 1.2 A GeV light nuclei, including radioactive ones [13, 14]. Studies with relativistic neutron-deficient nuclei have special advantages due to more complete observations. The dissociation features of ^{9,10}C and ¹²N nuclei, which are the sources of basic cluster configurations, will be presented in the present paper.

2 Coherent Dissociation of ⁹C Nuclei

One can expect that the pattern established for the ⁷Be [15] and ⁸B [18, 19] nuclei is reproduced for nucleus ⁹C with the addition of one or two protons. In addition, the emergence of a 3^{3} He ensemble becomes possible. An intriguing hypothesis is that in the nuclear astrophysical processes the 3^{3} He system can be a 3α -process analog.

A secondary beam, optimized for ⁹C nucleus selection was formed by fragmentation of accelerated ¹²C nuclei [20, 21]. It was important in this irradiation to avoid overexposure by the accompanying flux of ³He nuclei. The intensity ratio of the nuclei with charges $Z_{pr} = 6$ and 2 amounted to 1 : 10. This factor has limited statistics and made the scan for ⁹C interactions much more labor demanding.

R.Zh. Stanoeva et al.

Among the total number of "white" stars N_{ws} , detected in this exposure, 15 events ${}^{9}C \rightarrow {}^{8}B+p$ and 16 events ${}^{7}Be+2p$ are found. Statistics in the channels 2He+2H (24), He+4H (28) and 6H (6) well corresponds to the ${}^{7}Be$ core dissociation. The event fraction ${}^{9}C \rightarrow {}^{3}He$ (16) was found to be the same as that of the channels ${}^{9}C \rightarrow {}^{8}B+p$ and ${}^{7}Be+2p$.

The latter fact can point to a significant admixture of a virtual 3^{3} He state in the 9 C ground state. This component can give a contribution to the 9 C magnetic moment, which has an abnormal value in terms of the shell model [24].

3 Coherent dissociation of ¹⁰C and ¹²N nuclei

The ¹⁰C nucleus is the only example of the system, which has the "superboromean" properties, since the removal of one of the four clusters in the $2\alpha+2p$ structure (threshold 3.8 MeV) leads to an unbound state. The particular feature of the ¹²N nucleus consists in the low proton separation threshold (600 keV). Furthermore, the dissociation can occur through the channels $\alpha+^8B$ (8 MeV), $p+^7Be+\alpha$, as well as into more complicated ensembles with the ⁷Be core break.

Generation of ¹²N and ¹⁰C nuclei is possible in charge exchange and fragmentation reactions of accelerated ¹²C nuclei [21]. The charge to weight ratio Z_{pr}/A_{pr} differs by only 3% for these nuclei, while the momentum acceptance of the separating channel is 2 - 3%. Therefore, their separation is not possible, and the ¹²N and ¹⁰C nuclei are simultaneously present in the secondary beam, forming a so-called beam "cocktail". The contribution of ¹²N nuclei is small in respect to ¹⁰C ones in accordance with the cross sections for charge transfer and fragmentation reactions. Also, the beam contains ⁷Be nuclei, differing by Z_{pr}/A_{pr} from ¹²N nuclei only by 2%.

Due to the momentum spread ³He nuclei can penetrate in the separating channel. For neighboring ⁸B, ⁹C and ¹¹C nuclei the difference by Z_{pr}/A_{pr} from ¹²N is about 10%, which leads to suppression in these isotopes. Identification of ¹²N nuclei can be performed by δ -electron counting along the beam tracks. In the ¹⁰C case, relying on the charge topology of the produced "white" stars it is necessary to be sure that the neighboring carbon isotope contribution is small. These considerations provided the justification to expose nuclear track emulsion in a mixed beam of ¹²N, ¹⁰C and ⁷Be nuclei.

The initial scanning phase consisted in visual search of beam tracks with charges $Z_{pr}=1$, 2 and $Z_{pr}>2$. The ratio of beam tracks with charges $Z_{pr}=1$, 2 and $Z_{pr}>2$ is found to be equal $\approx 1:3:18$. Thus, the contribution of ³He nuclei dramatically decreased compared with the ⁹C irradiation, which radically raised the event search efficiency.

The presence of fragments $Z_{fr} > 2$ makes the charge identification of beam Z_{pr} and secondary Z_{fr} tracks necessary. For the calibration the average density of δ -electrons N_{δ} was measured along the beam tracks, which produced the "white" stars 2He+2H, 2He and He+2H, and also stars with fragments $Z_{fr} > 2$ (¹²N candidates). Thus, the correlation between the charge topology $\sum Z_{fr}$ and

 N_{δ} was established which permitted to determine beam track charges Z_{pr} and the fragment charges $Z_{fr} > 2$.

For "white" stars N_{ws} with charge topology $\sum Z_{fr}=6$ the most probable channel is represented by 91 events 2He+2H, which might be expected for the isotope ¹⁰C. The channel He+4H is found to be suppressed (14 events), as in the ¹⁰C case it is required to overcome the high threshold of the α -cluster break up.

In this irradiation 20 "white" stars with $Z_{pr}=7$ and $\sum Z_{fr}=7$ are found, corresponding to the dissociation of ¹²N nuclei. There are the following channels among them: C+H (1), ⁷Be+He+H (2), ⁷Be+3H (4), ⁸B+2H (3), 3He+H (2), 2He+3H (6), He+5H (3). Thus, half of the events contain a fragment $Z_{fr} > 2$, clearly differing from the cases of nuclei ¹⁴N [13, 14] and ¹⁰C.

4 Production of ⁸Be and ⁹B Nuclei in ¹⁰C Dissociation

The unbound ⁸Be nucleus plays the role of the core in the ¹⁰C structure, which should be manifested in the fragmentation intensity ¹⁰C \rightarrow ⁸Be. Distribution α pairs in the 91 "white" stars 2He+2H on the excitation energy $Q_{2\alpha}$ is presented in Figure 1. In 30 events the $Q_{2\alpha}$ value does not exceed 500 keV (inset in Figure 1). For them, the average value is $\langle Q_{2\alpha} \rangle \approx 110\pm20$ keV and the mean-square scattering σ =40 keV, which well corresponds to the decays of the ⁸Be 0⁺ ground state. The ⁸Be 0⁺ contribution is approximately the same as for the neighboring cluster nuclei.

The unbound ⁹B nucleus can be another major product of the ¹⁰C coherent dissociation. Figure 2 shows the distribution of "white" stars 2He+2H on the

Figure 1. Distribution number of "white" stars N_{ws} of the 2He+2H topology on the excitation energy $Q_{2\alpha}$ pairs of α -particles in the inset - enlarged distribution $Q_{2\alpha}$

R.Zh. Stanoeva et al.

Figure 2. Distribution number of "white" stars N_{ws} of the 2He+2H topology on the excitation energy $Q_{2\alpha p}$ triples 2α +p; in the inset – enlarged distribution $Q_{2\alpha p}$

excitation energy $Q_{2\alpha p}$, defined by the difference of the invariant mass of the three fragments 2α +p and the mass of the proton and the doubled α -particle mass. The $Q_{2\alpha p}$ values for one of two possible 2α +p triples do not exceed 500 keV in 27 events (inset in Figure 2). The average value for these triples is $\langle Q_{2\alpha p} \rangle = 250 \pm 15$ keV with rms $\sigma = 74$ keV. These values well correspond to the ⁹B ground state decay via the channel p+⁸Be (0⁺) having the published values of energy 185 keV and width (0.54\pm0.21) keV [25]. In the region limited by $Q_{2\alpha} < 1$ MeV and $Q_{2\alpha p} < 1$ MeV there is a clear correlation in the ⁸Be and ⁹B production. One can note the formation of a single event 2α +2p with $Q_{2\alpha p}$ equal to the values 0.23 and 0.15 keV, i.e., at the same time both triples correspond to the decay of the nucleus ⁹B. In all other ⁹B cases one of $Q_{2\alpha p}$ is above 500 keV.

In addition, excitations α +2p are studied on the remaining statistics of "white" stars 2He+2H beyond ⁹B decays. In the spectrum of $Q_{2\alpha p}$, there is no clear signal of ⁶Be decays [12], and its estimated contribution does not exceed 20%. This aspect deserves further analysis taking the proton angular correlations into account.

5 Conclusions

An indication on a significant admixture of a virtual 3^{3} He state to the 9 C ground state is observed. This conclusion for the 9 C nucleus is worthy to be checked in the calculations of its magnetic moment on the basis of cluster wave functions taking into account the 3^{3} He probability.

The pattern of the ¹²N and ¹⁰C dissociation seems to be self-consistent, and the performed exposures have prospects for increasing "white" star statistics. At the current stage one can derive some conclusions about the ¹²N and ¹⁰C clustering. Production of ⁸Be nuclei in coherent dissociation of ¹⁰C nuclei has the cascade decay nature ¹⁰C \rightarrow ⁹B and after ⁹B \rightarrow ⁸Be. The conclusion about the ¹⁰C isotope dominance in the beam based on the charge topology pattern is also confirmed in this angular analysis.

There is no significant contribution of decays ${}^{8}\text{Be} \rightarrow 2\alpha$ through the first excited state 2⁺, which differs qualitatively the ${}^{10}\text{C}$ and ${}^{9}\text{Be}$ nuclei. It can be assumed that the ${}^{8}\text{Be} 2^{+}$ state does not contribute to the ground state of the ${}^{10}\text{C}$ nucleus, and its core is formed of the extended 0⁺ state. Paired protons can have the meaning of a covalent pair in the ${}^{10}\text{C}$ molecular-like system with two-center potential $\alpha+2p+\alpha$. Verification of these assumptions will be made in the correlation analysis of the pairs of 2p, 2α and α p, and then for more complex configurations with unstable nuclei, i. e. $p+{}^{9}\text{B}$, $2p+{}^{8}\text{Be}$ and $\alpha+{}^{6}\text{Be}$.

To clarify the nucleon clustering in the ¹²N nucleus it is required to increase statistics and to identify H and He isotopes by multiple scattering measurements. Apparently, the ¹¹C nucleus does not manifest itself as a ¹²N core. Also, the lack of events of channel ⁸B+He (next on the threshold) seems to be unexpected. Probably, the ¹²N ground state is based on the ⁷Be core, while the remaining nucleons do not form an α -cluster.

Acknowledgements

The work was supported by grants of the Russian Foundation for Basic Research (96-1596423, 02-02-164-12, 03-02-16134, 03-02-17079, 04-02-17151. 04-02-16593 and 09-02-9126 CT-a), grant from the Agency for Science of the Ministry for Eduation of the Slovak Republic and the Slovak Academy of Sciences VEGA 1/2007/05 and 1/0080/08VEGA, and grants of the JINR Plenipotentiaries of the Republic of Bulgaria, the Slovak Republic, the Czech Republic and Romania in the years 2002-2010.

References

- [1] P. Schuck et al., Nucl. Phys. A 788 (2007) 293.
- [2] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H.H. Wolter, *Phys. Rev. C* 81 (2010) 015803.
- [3] Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, and T. Yamada, *Phys. Rev. Lett* 101 (2008) 082502.
- [4] S. Shlomo, G. Röpke, J.B. Natowitz, L. Qin, K. Hagel, R. Wada, and A. Bonasera, *Phys. Rev. C* 79 (2009) 034604.
- [5] W. von Oertzen, M. Freer, Y. Kanada-Enyo, Phys. Rep. 432 (2006) 43.
- [6] M. Freer, Rep. Prog. Phys. 70 (2007) 2149.
- [7] A. S. Botvina and I. N. Mishustin, Phys. Rev. C 72 (2005) 048801.
- [8] K. Sumiyoshi and G. Röpke, Phys. Rev. C 77 (2008) 055804.

R.Zh. Stanoeva et al.

- [9] C.J. Horowitz, M.A. Pérez-Garcia, D.K. Berry, and J. Piekarewicz, *Phys. Rev. C* 72 (2005) 035801.
- [10] N.P. Andreeva et al., Phys. At. Nucl. 68 (2005) 455; arXiv:nucl-ex/0605015.
- [11] N.P. Andreeva et al., EPJ A27 (2006) 295; arXiv:nucl-ex/0604003.
- [12] The BECQUEREL Project, http://becquerel.jinr.ru.
- [13] D.A. Artemenkov, T.V. Shchedrina, R. Stanoeva, and P.I. Zarubin, AIP Conf. Proc. 912 (2007) 78; arXiv:0704.0384.
- [14] T.V. Shchedrina et al., Phys. At. Nucl. 70 (2007) 1230; arXiv:nucl-ex/0605022.
- [15] N.G. Peresadko et al., Phys. At. Nucl. 70 (2007) 1226; arXiv:nucl-ex/0605014.
- [16] D.A. Artemenkov et al., Phys. At. Nucl. 70 (2007) 1222; arXiv:nucl-ex/0605018.
- [17] D.A. Artemenkov, D.O. Krivenkov, T.V. Shchedrina, R. Stanoeva, and P.I. Zarubin, *Few Body Systems* **44** (2008) 273.
- [18] R. Stanoeva et al., Phys. At. Nucl. 70(2007) 1216; arXiv:nucl-ex/0605013.
- [19] R. Stanoeva et al., Phys. At. Nucl. 72(2009) 690; arXiv:0906.4220.
- [20] D.O. Krivenkov et al., AIP Conf. Proc. 1224 (2010) 224.
- [21] P.A. Rukoyatkin, L.N. Komolov, R.I. Kukushkina, V.N. Ramzhin, P.I. Zarubin, EPJ ST 162 (2008) 267.
- [22] Y.L. Parfenova and Ch. Leclercq-Willain, Phys. Rev. C 72 (2005) 054304.
- [23] Y.L. Parfenova and Ch. Leclercq-Willain, Phys. Rev. C 72 (2005) 024312.
- [24] Y. Utsuno, Phys. Rev. C 70 (2004) 011303(R).
- [25] http://www.tunl.duke.edu/NuclData