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Abstract. A microscopic quantum-kinetic theory based on density matrix ap-
proach (using Wigner function representation) is formulated to describe the pro-
cesses of short pulse laser interaction with materials such as semiconductors ac-
counting for arbitrary spatial inhomogeneities in the excitation conditions and
other spatial phenomena such as filamentation of tightly focused femtosecond
laser pulses, structural modification and catastrophic optical damage. A system
of Boltzmann-Bloch transport equations is established that includes both space
and momentum dependence of the electron and hole distribution functions and
the polarization. Microscopic electron-phonon and electron-electron scattering
terms as well as scattering terms that lead to transitions between valence and
conduction bands, i.e. impact ionization and recombination terms, are included
explicitly in the equations. The formulated theory describes the spatio-temporal
carrier dynamics in inhomogeneously excited materials including the coherent
interactions of carriers and the laser light field as well as transport due to spatial
gradients and electrostatic forces.

1 Introduction

When dealing with a typical semiconductor-based optoelectronic device irra-
diated with laser light we consider the optical field, the created electron-hole
plasma (EHP) and the crystal lattice of the chosen material. Light generation,
propagation and amplification determine the behavior of the optical field. Carrier
generation and recombination, electrical conduction and diffusion determine the
behavior of the formed plasma. The photon energy of the laser field is converted
and conserved as kinetic and thermal energy of the plasma and thermal energy of
the lattice by creation and annihilation of phonons. All the described processes
take place on different time and space scales but they should be treated in a
self consistent manner with the appropriate coupled equations. Laser beam fila-
mentation, dynamic beam steering, catastrophic optical damage, thermal lensing
leading to formation of hot spots are cases requiring inclusion of spatial varia-
tion in the formalism describing the dynamics of optically generated carriers
interacting with the phonons of the lattice. Inhomogeneous excitation, bulk fila-
mentation laser damage, etc. lead to space dependent carrier distributions.
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2 Theoretical Model

When a spatially homogeneous system is excited by a spatially inhomogeneous
laser field, the dynamical variables become inhomogeneous and off diagonal
density matrices have to be introduced. A mixed momentum and real space rep-
resentation is most similar to classical distribution function and is best suited
for a comparison to semi-classical kinetics described by Boltzmann equation. A
microscopic density matrix theory is formulated accounting for arbitrary spa-
tial inhomogeneities in the excitation conditions leading to space-dependent
Boltzmann-Bloch transport equations for the description of spatio-temporal dy-
namics of electrons and holes of inhomogeneously excited materials such as
semiconductors including the coherent interactions of carriers and the laser light
field as well as transport due to spatial gradients and electrostatic forces. Only
the classical character of the laser optical field is considered while accounting for
the quantum mechanical properties of the semiconductor. Besides the interac-
tion with the light field other important interactions occur in the semiconductor
– Coulomb interaction among the carriers giving rise to screening and to ther-
malization of the nonequilibrium carrier distribution, as well as interaction with
phonons leading to an energy exchange between the carriers and the crystal lat-
tice. Based on typical length and time scales approximations are made with the
aim of obtaining numerically tractable system of equations. We follow the ap-
proach in [1] but unlike them we treat all the scattering terms explicitly without
resorting to relaxation time approximation [2]. We also include terms that lead to
transitions between valence and conduction band – impact ionization and Auger
recombination [3].

We consider a two-band model of an undoped semiconductor such as GaAs.
In the laser-matter interaction process the physical variables that are directly
related to observables of the system such as optical polarizations and distribu-
tion functions are all single-particle quantities calculated by the density ma-
trix. To describe space-dependent phenomena a Wigner representation of the
single-particle density matrix can be used. In Wigner representation the space-
dependent distribution functions (intraband density matrices) of electrons and
holes and polarization (interband density matrix) are defined as

fe(�k, �r) =
∑

�q

ei�q·�r〈c†�k+ 1
2�q
c�k− 1

2�q
〉,

fh(�k, �r) =
∑

�q

ei�q·�r〈d†�k+ 1
2�q
d�k− 1

2�q
〉

and p(�k, �r) =
∑

�q

ei�q·�r〈d−�k+ 1
2�q
c�k+ 1

2�q
〉,

where c†�k and d†�k(c�k and d�k) denote creation (annihilation) operators for elec-
trons and holes with wave vector, respectively and the brackets denote the ex-
pectation value of these operators.
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The single-particleHamiltonian describing the free carrier interacting with a
classical light field as well as the free phonons is given by:

H0 =
∑

�k

εe�kc
†
�k
c�k+

∑

�k

εh�kd
†
�k
d�k+

∑

�q

�ω�qb
†
�qb�q

−
∑

�k,�q

[
�μcv(�k) · �E†

�q(t)c
†
�k+ 1

2 �q
d†

−�k+ 1
2 �q

+ �μ∗
cv(�k) · �E−

�q (t)d†
−�k+ 1

2 �q
c†

�k+ 1
2 �q

]
(1)

where μ(�k) is the component in the direction of the laser field polarization of
the interband optical dipole matrix element between the electron state |c,�k〉 and
hole state |v,−�k〉. The field is represented by two counterpropagating waves
and the positive frequency component is given by:

�E† (�r, t) =
1
2

(
�E† (�r, t) eiKzz−iωt + �E− (�r, t) e−iKzz−iωt

)
(2)

and is expanded in a Fourier series

�E† (�r, t) =
∑

�q

�E0
�q (t) ei(�q·�r−ωt) =

∑

�q

�E†
�q (t) ei�q·�r (3)

In the absence of an external light field the electron states are eigenstates of an
ideal periodic lattice. Deviations from this idealized periodicity due to lattice
vibrations lead to a coupling of the different electronic states. This interaction is
described by the carrier-phonon Hamiltonian.

Hcp
I =

∑

�k,�k′,�q

C�q

[
c†�k+�qb�qc�k − c†�kb

†
�qc�k+�q − d†�k+�qb�qd�k + d†�kb

†
�qd�k+�q

]
, (4)

where the electron- phonon coupling constant for interaction with optical phonons
is:

|C�q|2 =
(

�ωLO
2V

)[
1

εr (∞)
− 1
εr (0)

] [
e2

ε0 (q2 +Q2
s)

]
(5)

εr (∞) and εr (0) are the relative static and optical dielectric constant, respec-
tively, ε0 is the absolute dielectric constant of the vacuum, �ωLO is the optical
phonon energy and V is the normalization volume. The charged carriers inter-
act via the Coulomb potential V�q and the Hamiltonian describing carrier-carrier
interaction processes conserving the number of particles per band is given by:

Hcc
I =

∑

�k,�k′,�q

V�q

[
1
2
c†�kc

†
�k′
c�k′+�qc�k−�q +

1
2
d†�kd

†
�k′
d�k′+�qd�k−�q − c†�kd

†
−�k′d−�k′+�qc�k−�q

]

(6)
This carrier-carrier Hamiltonian can be separated into a mean field (Haretree-
Fock) Hcc

HF part and a remaining part depending on two-particle correlations
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Hcc
corr. The effective single particle Hamiltonian isHeff = H0+Hcc

HF . The cor-
relation part of the carrier-carrier interaction Hamiltonian gives two phenomena:
scattering processes between the carriers and screening of the bare Coulomb in-
teraction.

The part of the perturbation Hamiltonian that yields impact ionization and
its inverse process, Auger recombination is given by [3], [4]:

H
cc(c−v)
I =

∑

�k,�k′,�q

[
Me (q) c†�k+�qc

†
�k′−�qd

†
−�k′c�k +M∗

e (q) c†�kd−�k′c�k′−�qc
†
�k+�q

]

+
∑

�k,�k′,�q

[
Mh (q) d†�k+�qd

†
�k′−�qc

†
−�k′d�k +M∗

h (q) d†�kc−�k′d�k′−�qd�k+�q
]

(7)

Me (q) = V�qg�q, where V�q =
e2

V ε0εrq2
is the Coulomb potential and g�q is the

interband-transition form factor.

3 Generalized Boltzmann-Bloch Equations

By using Heisenberg’s equations of motion, the equations of motion for the
single-particle density matrices in Wigner representation can be derived. The
effective single-particle Hamiltonian Heff gives a closed set of equations for
the distribution functions of electrons and holes and by interband polarization.
Being Wigner distributions these quantities are functions of space and momen-
tum but there is a big difference of time scales between the momentum space and
real space dynamics. Scattering and dephasing processes lead to fast relaxation
of the microscopic variables towards their local quasi-equilibrium values on a
femtosecond time-scale while the spatial transport happens on a much slower
time-scale (10 ps to ns). Because of the typical separation of time scales be-
tween the �k-space and �r-space dynamics, the influence of spatial gradients on
the k-space dynamics is often negligible. However, some of the scattering terms
in the equations of motion for the distribution functions conserve the density of
carriers and therefore the density is not influenced by the fast relaxation pro-
cesses and its spatial transport cannot be neglected. In the equation of motion
for the polarization no conserved quantities exist and thus the spatial transport of
polarization is usually not important. In principle the complete set of equations
required is therefore the Maxwell-Boltzmann-Bloch-Poisson equations for the
nonequilibrium distribution functions fα(�k, �r), interband polarization p(�k, �r),
electric potential Φ(�r), and the laser field �E(�r, t), with �k and �r being the two-
dimensional (2D) vectors in reciprocal (momentum) space and real space, re-
spectively.

Keeping the first order spatial derivatives of the distribution functions and
neglecting any spatial transport of polarization, the equations of motion for elec-
tron and hole distribution functions are given by the generalized Boltzmann
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equations for two band model including the coherent interband transport con-
tributions.

∂

∂t
fα(�k, �r, t) +

1
�

∂εα(�k, �r)
∂k

· ∂f
α(�k, �r, t)
∂r

− 1
�

∂

∂r
[δεα(�k, �r) + qΦ(r)] · ∂f

α(�k, �r, t)
∂k

= Rα(�k, �r) +
∂

∂t
fα(�k, �r)col (8)

The lowest order contribution to the polarization is included, where the spa-
tial coordinate enters only as a parameter and locally the dynamics coincide with
those of the inhomogeneous case and there are no transport effects. This lowest
order picture is sufficient to describe pump-probe experiments in which filamen-
tation is observed.

∂

∂t
p(�k, �r, t) = − i

�
[εe(�k, �r, t) + εh(−�k, �r, t)]p(�k, �r, t)

− iΩ(�k, �r)[fe(�k, �r, t) + fh(−�k, �r, t) − 1] +
∂

∂t
p(�k, �r)col (9)

εα
(
�k, �r

)
= εα

(
�k
)

+ qαΦ(r) + δεα
(
�k, �r

)
,

εe,h
(
�k
)

=
�

2k2

2mα
is the single particle energy, δεα(�k, �r) = −∑

�k′
fα(�k, �r)V s�k′−�k

+
1
2
∑
�k′

[V s�k′−�k − V�k′−�k] is the renormalization of the single particle carrier en-

ergy due to exchange interaction, V s�q =
V�q

ε (�q, 0)
is the screened Coulomb po-

tential. The electrostatic potential due to the Hartree terms in the mean field
Hamiltonian satisfies the Poisson equation:

∂2

∂r2
Φ(�r) =

4πe
ε0V

∑

�k

[
fe
(
�k, �r

)
− fh

(
�k, �r

)]
(10)

The generation rate in the equation (8) is given as follows:

Rα
(
�k, �r

)
= i

[
Ω
(
�k, �r

)
p∗
(
�k, �r

)
− Ω∗

(
�k, �r

)
p
(
�k, �r

)]
, (11)

where Ω
(
�k, �r

)
is the renormalized Rabi frequency defined by:

�Ω
(
�k, �r

)
= μ

(
�k
)
�E (�r, t) +

∑

�k′

p
(
�k′, �r

)
V s�k−�k′ . (12)

The second term in the above expression is the internal field responsible for
Coulomb enhancement.
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4 Scattering Processes

Within a semiclassical picture when scattering processes are described in terms
of scattering rates, the scattering contributions to the equation of motion have
the structure of the Boltzmann collision terms. The electron-phonon scattering
rates are obtained from Fermi’s golden rule and quadratic or higher order terms
and terms involving simultaneous electron-phonon and hole-phonon interaction
have been neglected in the polarization and in the carrier-phonon Hamiltonian.
Incoherent scattering processes appear for the first time in second order contri-
butions [1,3,5,6].

Collisional contributions in equations (1) and (2) lead to relaxation in the
carrier distributions and decay in the interband polarization:

∂

∂t
fα

(
�k, �r

)

col
=

∂

∂t
fα

(
�k, �r

)

αα
+
∂

∂t
fα

(
�k, �r

)

eh
+
∂

∂t
fα

(
�k, �r

)

LO
(13)

∂

∂t
p
(
�k, �r

)

col
=
∑

�q

[
W p
�k,�k−�qp

(
�k − �q, �r

)
−W p

�k−�q,�kp
(
�k, �r

)]
(14)

The first term on the RHS of equation (3) depicts the scattering processes arising
from the correlation part of the carrier-carrier Hamiltonian and the third term
arises from the carrier-phonon Hamiltonian

∂

∂t
fα(�k, �r)αα/LO =

∑

�q

[W e,h
�k,�k−�qf

e,h(�k − �q, �r)(1 − fe,h(�k, �r))

−W e,h
�k−�q,�kf

e,h(�k, �r)(1 − fe,h(�k − �q, �r))] (15)

where the scattering matrices are given by:

W
e,h(αα)
�k−�q,�k =

2π
�

∑

α=e,h

∑

�k′

∣∣V s�q
∣∣2δ

(
εe,h�k−�q + εα�k′+�q − εα�k′ − εe,h�k

)

× fα
(
�k′, �r

) [
1 − fα

(
�k′ + �q, �r

)]
(16)

W
e,h(LO)
�k−�q,�k =

2π
�

∣∣Ce,hq
∣∣2 (Nq + 1) δ

(
εe,h�k−�q − εe,h�k

+ �ωq

)

+
2π
�

∣∣Ce,hq
∣∣2Nqδ

(
εe,h�k−�q − εe,h�k

− �ωq

)
(17)

The Boltzmann scattering matricesW e,h
�k−�q,�k for electrons and holes are real quan-

tities and the scattering matrices W p
�k−�q,�k in the equation of motion for the polar-
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ization are complex and the real part is related to W e,h
�k−�q,�k according to:

Re
(
W p
�k−�q,�k

)
=

1
2
W e
�k−�q,�k

[
1 − fe

(
�k − �q, �r

)]
+W e

�k,�k−�qf
e
(
�k − �q, �r

)

+
1
2
Wh
�q−�k,−�k

[
1 − fh

(
�q − �k, �r

)]
+Wh

−�k,�q−�kf
h
(
�q − �k, �r

)
(18)

The real part of W p
�k−�q,�k describes scattering processes leading to a dephasing of

the polarization and the imaginary part describes second-order contributions to
the band-gap renormalization.

The carrier-carrier scattering rate in the collisional contribution to the polar-
ization equation describing the effect of correlations is given by:

W
p(αα)
�k−�q,�k =

π

�

∑

α=e,h

∑

�k′

∣∣V s�q
∣∣2δ

(
εe,h�k−�q + εα�k′+�q − εα�k′ − εe,h�k

)

× fα
(
�k′, �r

) [
1 − fα

(
�k′ + �q, �r

)]
×
[
1 − fe,h

(
�k − �q, �r

)]

+ fe,h
(
�k − �q, �r

)
fα

(
�k′ + �q, �r

) [
1 − fα

(
�k′ + �q, �r

)]
(19)

The carrier-phonon scattering rate in the collisional contribution to the po-
larization equation is given by:

W
p(LO)
�k−�q,�k =

π

�
|Cq|2 δ

(
εe,h�k−�q − εe,h�k

+ �ωq

){
Nqf

e,h
(
�k − �q, �r

)

+ (Nq + 1)
[
1 − fe,h

(
�k − �q, �r

)]}
+
π

�
|Cq|2 δ

(
εe,h�k−�q − εe,h�k

− �ωq

)

×
{

(Nq + 1) fe,h
(
�k − �q, �r

)
+Nq

[
1 − fe,h

(
�k − �q, �r

)]}
(20)

5 Impact Ionization and Auger Recombination

Since we interested in the processes of laser damage and filamentation in the

semiconductor material, we include the
∂

∂t
fα

(
�k, �r

)

eh
terms that lead to tran-

sitions between valence and conduction bands, i.e. impact ionization term and
Auger recombination term [3]. Impact ionization and Auger recombination are
second-order two-particle Coulomb scattering processes (proportional to Coulomb
scattering). In a case when we have a homogeneous system (material) that is ei-
ther homogeneously or inhomogeneously excited the Coulomb matrix elements
depend on the momentum transfer �q only, i.e. ∝ |V�q|2.

These contributions are derived using second-order perturbation theory such
as Coulomb scattering [3] which is very important to conduction-electron dy-
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namics and the change of electron density.

∂

∂t
fe
(
�k, �r

)

e−h(imp)
= Neff

2π
�

∑

�q

|V�q|2g�qδ
(

2εe�k − εe|�k+�q| + εh|�k−�q| + EG

)

×
[
1 − fe

(
�k, �r

)]2
fe
(
�k + �q, �r

) [
1 − fh

(
�k − �q, �r

)]

+Neff
2π
�

∑

�q

|V�q|2g�qδ
(

2εe|�k−�q| − εe�k + εh|�k−2�q| + EG

)

× fe
(
�k, �r

) [
1 − fe

(
�k − �q, �r

)]2 [
1 − fh

(
�k − 2�q, �r

)]
(21)

∂

∂t
fe
(
�k, �r

)

e−h(rec)
=

2π
�

∑

�q

|V�q|2g�qδ
(
εe�k − 2εe�k−�q − εh�k−2�q

− EG

)

×
[
1 − fe

(
�k, �r

)]
×
[
fe
(
�k − �q, �r

)]2
fh
(
�k − 2�q, �r

)

+
2π
�

∑

�q

|V�q|2g�qδ
(
εe�k+�q − 2εe�k − εh�k−�q − EG

)

×
[
fe
(
�k, �r

)]2 [
1 − fe

(
�k + �q, �r

)]
fh
(
�k − �q, �r

)
(22)

with g�q ≈ 2 (m∗
e/m0).

The semiclassical generation rate for carrier-light interaction is obtained by
eliminating the polarization as independent variable [6]. This is done by solving
the equation for polarization within the adiabatic and Markov approximation.
For Gaussian pulse with a space dependent amplitude

E (�r, t) = EL (�r) exp
[
− (t/τL)2

]
(23)

the time integration of the polarization equation (2) gives

Rα
(
�k, �r

)
= (2π)1/2

(
MkEL (�r)

�

)2

τL exp
[
−2 (t/τL)2

]

× exp
[
−1

2
(τLΔωk)

2

]
×
[
1 − fe

(
�k, �r

)
− fh

(
�k, �r

)]
(24)

where

Δωk = ωL − 1
�

(
εe
(
�k, �r

)
+ εh

(
�k, �r

))
(25)

is the detuning of a given transition with wavevector �k from resonance, ωL being
the laser frequency.

The time integration is possible only under the assumption that during the
laser pulse the polarization is not influenced by any scattering processes leading
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to phase-breaking during carrier generation. The only density dependence of
this rate is due to phase-space filling. While adiabatic elimination of polarization
leads to a simple closure of the total set of equations, this set of equations have
a severe deficiency, especially in the presence of any kind of spatial inhomo-
geneity. That is why in the formulated approach we are keeping the Boltznann-
Bloch transport equations for the three distribution functions fe(�k, �r), fh(�k, �r),
p(�k, �r), though all transport terms involving explicit spatial variation of p(�k, �r)
are ignored. For ultrafast spatial inhomogeneous processes such spatial terms in
the polarization equations should be important.

6 Numerical Procedures in Progress

The microscopic dynamics of the distribution function and the nonlinear polar-
ization are governed by the equations of motion (1) and (2). The �k-resolved
interband polarization equations have to be solved self-consistently for all space
and time grid points. A full kinetic treatment of the scattering processes will
be performed by using e.g. Monte Carlo simulations. Generalized Monte Carlo
methods taking into account phase relations between different type of carriers
(polarization effects), interaction of carriers with external coherent inhomoge-
neous electromagnetic field (generation effects), and the correlation and renor-
malization effects associated with carrier-carrier interaction can be utilized [7].

7 Conclusion

A microscopic quantum-kinetic theory based on density matrix formalism [8]
is formulated to describe the processes of short pulse laser interaction with ma-
terials such as semiconductors accounting for arbitrary spatial inhomogeneities
in the excitation conditions and other spatial phenomena such as filamentation
of tightly focused femtosecond laser pulses, structural modification and catas-
trophic optical damage. A system of Boltzmann-Bloch transport equations are
established that include both space and momentum dependence of the elec-
tron and hole distribution functions and the polarization. Microscopic electron-
phonon and electron-electron scattering terms as well as scattering terms that
lead to transitions between valence and conduction bands, i.e. impact ionization
and recombination terms, are included explicitly in the equations. The formu-
lated theory describes the spatio-temporal dynamics of electrons and holes in
inhomogeneously excited materials including the coherent interactions of car-
riers and the laser light field as well as transport due to spatial gradients and
electrostatic forces.
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