E0 decay and Lifetimes of 0^+_2 States in the Rare-earth Region: the Case of $^{156}\rm{Dy}$ and $^{160}\rm{Er}$

<u>D. L. Balabanski</u>¹, G. Lo Bianco², L. Atanasova¹, N. Blasi³, S. Das Gupta², P. Detistov¹, K. Gladnishki⁴, L. Fortunato⁵, A. Kusoglu⁶, S. Nardelli², A. Saltarelli²

¹Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

²School of Science and Technology, University of Camerino and INFN - Sez. Perugia, Italy

³INFN - Sez. Milano, Italy

⁴Faculty of Physics, St. Kliment Ohridski University of Sofia, Bulgaria

⁵ECT*, Trento, Italy

⁶Department of Physics, University of Istanbul, Turkey

The branching between the $E0 \ 0^+_2 \rightarrow 0^+_1$ and the $E2 \ 0^+_2 \rightarrow 2^+_1$ transitions in ¹⁵⁶Dy and ¹⁶⁰Er were measured following the ε decay of ¹⁵⁶Ho and the β decay of ¹⁶⁰Tm. A dynamic symmetry transition from a spherical harmonic vibrator to an axially deformed rotor, denoted X(5) [1], is suggested to occur in this region and ¹⁵⁶Dy is considered to be a good candidate for the X(5) symmetry [2]. It is interesting in this respect to investigate the E0 transition strength in the decay of the excited 0^+_2 state, because this quantity is known to have particularly large values in the transitional region between spherical and deformed nuclei [3].

The results are compared to calculations, using a potential in β of the form:

$$u(\beta) = V_0(\zeta \beta^4 - 2\zeta \beta_0 \beta^3 + (1 - \zeta) \beta_0^2 \beta^2), \tag{1}$$

with $0 \le \zeta \le 1$. This potential was chosen to describe the U(5) - SU(3) first order shape phase transition, covering the whole transitional path. When $\zeta = 0$ there is a spherical minimum, at the critical point, $\zeta = 1/2$ there are two co-existing minima, one at $\beta = 0$ and the other at $\beta = \beta_0$, while for $\zeta = 1$ there is a unique deformed minimum for $\beta = \frac{3}{2}\beta_0$.

From the comparison of the measured excitation spectra with the calculations, one might conclude that ¹⁵⁶Dy is in the spherical region $(\zeta \sim 0.1)$, while ¹⁵⁸Dy is just after the critical point ($\zeta = 0.54$), but the deformed minimum is winning. In the Er isotopes, ¹⁵⁸Er is close to the spherical limit ($\zeta = 0.06$), ¹⁶²Er is clearly deformed ($\zeta = 0.79$), while

XXX International Workshop on Nuclear Theory

 $^{160}\mathrm{Er}$ takes a value $\zeta=0.53,$ which locates it quite close to the critical point.

Lifetime measurements of these states provide independent information for the E2 strength. A compilation of the measured values in the rate-earth region will be reported and a first results for such experiments in 156 Dy and 160 Er will be discussed.

References

- [1] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
- [2] M.A. Caprio et al., Phys. Rev. C 66, 054310 (2002).
- [3] K. Heyde and R.A. Meyer, Phys. Rev. C 37, 2170 (1988).

Rila Mountains, Bulgaria, 27 June – 1 July, 2011

37