Microscopic Analysis of ¹¹Li Elastic Scattering from Protons

<u>D. N. Kadrev</u>¹, V. K. Lukyanov², A. N. Antonov¹, E. V. Zemlyanaya², K. V. Lukyanov², M. K. Gaidarov¹, K. Spasova³

¹Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

²Joint Institute for Nuclear Research, Dubna 141980, Russia

³Department of Theoretical and Applied Physics, Shumen University, Shumen 9712, Bulgaria

A microscopic optical model analysis of the ¹¹Li+p elastic scattering data at incident energies of 62, 68.4, and 75 MeV/nucleon has been performed utilizing the microscopic optical potentials derived by a folding procedure and also by using those inherent in the high-energy approximation. The calculated optical potentials are based on the microscopically obtained neutron and proton density distributions within the large-scale shell model for ¹¹Li. The depths of the real and imaginary parts of the microscopic optical potentials are considered as fitting parameters. The role of the spin-orbit potential is studied.