Collective Excitations of Deformed Nuclei and Their Coupling to Single Particle States

J. F. Sharpey-Schafer¹

¹Physics Department, University of Western Cape, Belleville, South Africa

Traditionally [1] the collective excitations of deformed even-even nuclei, that give rise to intrinsic band heads within the pairing gap, have been regarded as β ($K^{\pi} = 0^+$), γ ($K^{\pi} = 2^+$) and octupole ($K^{\pi} = 0^-$ to 3^-) vibrations. However the properties of the lowest excited 0^+_2 states in deformed nuclei do not generally have the properties of a β vibration [2]. The low-lying 0^+_2 states in transitional rare earth nuclei have been shown [3, 4] to be 2p - 2h, or 4qp, neutron states involving the [505]11/2⁻ Nilsson orbit extruded by the deformation to the Fermi surface from the filled $h_{11/2}$ shell. This is demonstrated by the blocking of the coupling of [505]11/2⁻ neutrons in odd-A nuclei to their core 0^+_2 states in N=88 and N=90 nuclei [4].

This experimental observation leaves γ and octupole vibrations as the remaining collective states within the pairing gap. It demonstrates that nuclei, in general, are stiff to $K^{\pi} = 0^+$ vibrations along the symmetry axis, even in transitional regions where the nuclear shape is changing rapidly. It also demonstrates the futility of expecting non-microscopic theories to be able to describe 0^+_2 states if the effects of Pauli blocking cannot be included in the models.

In this presentation we will review the experimental data on $K^{\pi} = 2^+$ " γ -bands" in deformed nuclei, built both on alignments in even-even nuclei and coupling to single particles in odd-A nuclei.

References

- A. Bohr and B.R. Mottelson, *Nuclear Structure*, Vol. II, World Scientific, Singapore (1983), pp.363.
- [2] P.E. Garrett, J. Phys. G 27 (2001) R1.
- [3] J.F. Sharpey-Schafer et al., Eu. Phys. J. A 47 (2011) 5.
- [4] J.F. Sharpey-Schafer et al., Eu. Phys. J. A 47 (2011) 6.