Effects of strong magnetic fields on the equation of state of cold non-accreting neutron-star crusts

N. Chamel¹, R. L. Pavlov², L. M. Mihailov³, Ch. J. Velchev², Zh. K. Stoyanov², Y. D. Mutafchieva², M. D. Ivanovich²

¹Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium

²Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

³Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

Abstract. Neutron stars are among the most strongly magnetized objects in the Universe with magnetic fields as high as $\sim 10^{15}$ G in soft-gamma repeaters and anomalous X-ray pulsars [1]. Even stronger fields might exist in the interior of these stars. We have determined the equilibrium structure of the outer crust of cold non-accreting neutron stars endowed with strong magnetic fields in the framework of the magnetic BPS model [2]. We have made use of the most recent experimental atomic mass data [3] complemented with a microscopic mass model based on the Hartree-Fock-Bogoliubov method [4]. The equation of state is found to be markedly affected by the Landau quantization of electron motion.

References

- [1] S. Mereghetti, Astron. & Astrophys. Rev. 15, 225 (2008).
- [2] D. Lai and S.L. Shapiro, Astr. J. 383,745 (1991).
- [3] G. Audi, M. Wang, A.H. Wapstra, B. Pfeiffer, and F.G. Kondev, private communication (2010).
- [4] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804 (2010).