*E*0 Decay of 0_2^+ States in the Rare-Earth Region: The Case of 156Dy and 160Er

D.L. Balabanski¹, G. Lo Bianco², L. Atanasova¹, N. Blasi³, S. Das Gupta², K. Gladnishki¹, L. Fortunato⁵, S. Nardelli², A. Saltarelli²

¹Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
²School of Science and Technology, University of Camerino and INFN - Sez. Perugia, Italy
³INFN - Sez. Milano, Italy
⁴Faculty of Physics, St. Kliment Ohridski University of Sofia, Bulgaria
⁵ECT*, Trento, Italy

Abstract. The branching between the *E*0 0_0^+ → 0_1^+ and the *E*2 0_2^+ → 2_1^+ transitions in 156Dy and 160Er were measured following the ε-decay of 156Ho and 160Tm, respectively. The experimental results are compared to theoretical calculations, using a generalized potential in the 4^{th} order of the deformation parameter β, which describes the violation of spherical symmetry in nuclei. This potential was chosen to cover the whole transitional path from from a spherical harmonic vibrator to an axially deformed rotor, since a dynamic symmetry transition, denoted X(5), is suggested to occur for the N = 90 rare-earth nuclei. The lifetimes of these states provide independent information for the *E*2 strength and are used for the extraction the *E*0 strength.

Introduction

In the geometrical description of collective nuclear motion there are three limiting cases, corresponding to the harmonic vibrator, the symmetrically deformed rotor and the triaxial rotor. Each of them is associated with a particular nuclear shape, spherical, axial-ellipsoidal, and triaxial. The transition from a spherical harmonic vibrator to an axially deformed rotor was described analytically by Iachello, introducing a dynamic symmetry, denoted X(5) [1]. It is interesting in this context to investigate the *E*0 transition strength, in the decay of the first excited 0_2^+ state, because this quantity is known to have particularly large values in the transitional region between spherical and deformed nuclei [2,3]. This fact can be explained by strong mixing of states with different deformation [4], or within the framework of the Interacting Boson Model (IBM) [5], by mixing of states with different number of bosons [3]. Electric monopole, *E*0, transitions are forbidden by the γ-decay selection rules and can occur only via the emission
of atomic electrons. Electron emission is the only process by which a 0^+ state can decay to another 0^+ state. If the nuclear spin is non-zero, electric quadrupole $E2$, and $E0$ transitions compete with each other. The $E0$ transition probability is factorized into electron and nuclear terms [6],

$$ W = \Omega \rho^2(E0), $$(1)

where Ω represents all the "non-nuclear" contributions and can be calculated from several atomic models [7–9]. The nuclear structure information is contained in $\rho^2(E0)$ and can be directly related to different nuclear models.

Considering a simple collective geometrical model, Rasmussen estimated the dimensionless ratio of the reduced $E0$ and $E2$ transition probabilities and demonstrated that it is proportional to the deformation, β [10]

$$ X(E0/E2; 0^+_2 \rightarrow 0^+_1) = e^2 R_0^4 \frac{\rho^2(E0; 0^+_2 \rightarrow 0^+_1)}{B(E2; 2^+_0 \rightarrow 2^+_1)} = 4\beta^2, $$

(2)

where R_0 is the nuclear radius. This ratio can be compared with the experiment as [11]

$$ X(E0/E2; 0^+_2 \rightarrow 0^+_1) = 2.54 \cdot 10^9 A^{4/3} E_\gamma^5 q^2 \alpha_K(E_\gamma)/\Omega, $$

(3)

where E_γ is the energy of the $E2$ transition in MeV and $\alpha_K(E2)$ is the K-conversion coefficient for the $E2$ transition. The quantity q^2 is measured in the experiment as

$$ q^2 = \frac{A_{e,K}(E0)}{\epsilon_{e,K}(E0)} \cdot \frac{\epsilon_{e,K}(E2)}{A_{e,K}(E2)}, $$

(4)

where $A_{e,K}(E\lambda)$ is the intensity of the K line for the corresponding transition and $\epsilon_{e,K}(E\lambda)$ is the efficiency of the β spectrometer.

The ratio of the reduced transition probabilities $X(E0/E2)$ in 156Dy and 160Er was studied recently [12]. The $N = 90$ nucleus 156Dy is considered as a good candidate for $X(5)$ symmetry [13], while 160Er, which has a structural parameter $R_{4/2} = E(4^+_1)/E(2^+_1) = 3.1$, lies on the transition path between the critical point of the vibrator-rotor shape phase transition and the rigid rotor limit.

Experiment and Results

The experiments were performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania. Partial level schemes of 156Dy and 160Er are presented in Figure 1.

Levels in 156Dy were populated by the 156Er \rightarrow 156Ho \rightarrow 156Dy ϵ decay chain. Excited states in 156Er were populated in the 148Sm(12C,4n) reaction at 73 MeV. The 12C beam was provided by the LNS tandem accelerator and the target was a thin self-supporting isotope-enriched foil having a thickness of ≈ 0.8 mg/cm2. Since the 156Er \rightarrow 156Ho and the 156Ho \rightarrow 156Dy decays have
E0 decay of 0^+_2 states in 156Dy and 160Er

half lives of 19.5 min and 56 min, respectively, the experiment was performed by repeating cycles in which the 148Sm target was irradiated for one hour and, after a 5 min delay, the decay of 156Ho was measured for one hour by detecting off-beam γ rays and conversion electrons. In-beam spectra, produced by the prompt de-excitation of 156,157Er levels, were also collected during the irradiation periods for calibration purposes.

Excited states in 160Er were populated through the 160Tm \rightarrow 160Er ϵ decay chain. 160Tm was produced by the 150Sm(14N,4n) reaction at 72 MeV. The target was a thin self-supporting isotope-enriched foil with a thickness of 0.612 mg/cm2. The half live of 160Tm is 9.4 min, therefore, a ten-minute on-off beam cycle was used. The data was collected in the beam-off intervals.

In both cases the β decay of the parent nuclei populates low-spin states in the daughter nuclei. Schematically the technique is illustrated in Figure 2. It has the advantage that the β decay passes through low-spin states. As a result,

Figure 1. Partial level schemes of 156Dy (left) and 160Er (right), revealing the decay of the bands which are built on the 0^+_2 states.

Figure 2. Schematic presentation of the population of non-yrast states in off-beam β-decay experiments.
the population of non-yrast states in the nucleus of interest is enhanced and relatively clean spectra are obtained. Another advantage of the technique is that the measurement is done off-beam, which reduces the background of the electron spectra.

Excited states in 156Dy are populated in the β decay of 156Ho. There are three β-decaying states in 156Ho – the 4^- ground state ($T_{1/2} = 56(1)$ min) and the 1^- ($T_{1/2} = 9.5(15)$ s) and 9^+ ($T_{1/2} = 7.8(3)$ min) isomers. In the reaction the grandparent even-A nucleus 156Er is produced, which β-decays to low-spin states in 156Ho. In this way the β-decay of the 9^+ isomer is suppressed, because this state is weekly populated and the decay goes through the 4^- ground state and the 1^- isomer.

Non-yrast states in 160Er are populated by the β decay of 160Tm. In this case the β decay goes through the 1^- ground state ($T_{1/2} = 9.4(3)$ min) and the $I = 5$ isomer ($T_{1/2} = 74.5(15)$ s). With the selected beam-on/beam-off cycle the isomer β decay contributes little to the recorded spectra.

The measured γ-ray and conversion electron spectra, revealing the decay of the 0^+_2 states in 156Dy and 160Er are presented in Figure 3. The γ rays were measured with a coaxial HPGe detector which was positioned at 90° degrees with respect to the beam. Conversion electrons were measured with a mini-orange spectrometer, a magnetic lens made by permanent Sm-Co magnets, shaped like orange slices, and a 3 mm-thick Si(Li) detector cooled at liquid-nitrogen temperature. The mini-orange spectrometer was positioned at 135° with respect to the beam, in backward direction.

Results and Discussion

The 676-keV $E0$ transition in 156Dy is rather weak (see the lower panel in the right part of Figure 3). Therefore, possible sources of contamination were analysed carefully to avoid systematic errors. Using the γ-ray intensities from the experiment and the conversion coefficients of Ref. [14], $q^2 = 1.97(70)$ was obtained. Estimating the electronic factor with the method of Kantele [9] as $\Omega = 4.05 \cdot 10^{10}$ s$^{-1}$, the ratio of the reduced transition probabilities is $X(E0/E2; 0^+_2 \rightarrow 0^+_1) = 0.045(17)$. The γ-ray intensities, which were measured by Caprio et al. [13], can also be used in the analysis, since excited states in 156Dy were populated in exactly the same way in both experiments. They yield $q^2 = 2.17(74)$, in perfect agreement with the value above.

These values can be compared with results from a recent compilation of the $E0$ strength [11], where the authors re-evaluated the existing data. For 156Dy the results are: $q^2 = 3(2)$ and $X(E0/E2; 0^+_2 \rightarrow 0^+_1) = 0.08(5)$. The results are in agreement with each other, but with the present experiment, the uncertainty was reduced considerably.

In Table 1 the $X(E0/E2)$ ratios of reduced transition probabilities for several other transitions, which de-excite the band, which is built on the 0^+_2 state, are presented [15]. These, combined with measurements of lifetimes [16] and
Figure 3. (left) Partial off-beam γ-ray spectrum (upper panel) and conversion electron spectrum (lower panel), obtained in the ϵ decay of 156Ho; (right) Partial off-beam γ-ray spectrum (upper panel) and conversion electron spectrum (lower panel), obtained in the ϵ decay of 160Tm.
Table 1. Ratios of reduced transition probabilities, lifetimes and $E0$ strength of transitions connecting the β band and the ground-state band in 156Dy.

<table>
<thead>
<tr>
<th>E_γ, keV</th>
<th>$I_0^\beta \rightarrow I_0^\pi \rho$</th>
<th>q^2</th>
<th>$X(E0/E2)$</th>
<th>τ, ps</th>
<th>$\rho^2(E0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>666.9</td>
<td>$6_2^+ \rightarrow 6_2^+$</td>
<td>3.8(8)</td>
<td>0.163(34)</td>
<td>5.14(34)</td>
<td>58(26)</td>
</tr>
<tr>
<td>675.6</td>
<td>$0_2^+ \rightarrow 0_2^+$</td>
<td>1.9(7)</td>
<td>0.045(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>684.1</td>
<td>$4_2^+ \rightarrow 4_2^+$</td>
<td>3.4(7)</td>
<td>0.158(32)</td>
<td>6.5(17)</td>
<td>61(5)</td>
</tr>
<tr>
<td>690.9</td>
<td>$2_2^+ \rightarrow 2_2^+$</td>
<td>2.7(6)</td>
<td>0.127(26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion coefficients [15] of the levels of interest, allow the $E0$ strength of these transitions to be extracted.

The $X(E0/E2)$ ratios of the $0_2^+ \rightarrow 0_1^+$ transitions in the $N = 90$ nuclei are presented in Table 2, together with values of the deformation parameter β, which was calculated within the approximation of Rasmussen [10]. The results indicate that the $N = 90$ nuclei have moderate deformation.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$X(E0/E2; I_0^\beta \rightarrow I_0^\rho)$</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>152Sm</td>
<td>0.074(6)</td>
<td>0.14(2)</td>
</tr>
<tr>
<td>154Gd</td>
<td>0.048(20)</td>
<td>0.11(7)</td>
</tr>
<tr>
<td>156Dy</td>
<td>0.045(17)</td>
<td>0.11(6)</td>
</tr>
<tr>
<td>158Er</td>
<td>0.039(7)</td>
<td>0.10(2)</td>
</tr>
</tbody>
</table>

In the case of 160Er a more intense $0_2^+ \rightarrow 0_1^+$ transition was observed (see the lower panel in the right part of Figure 3). With the mini-orange efficiency calibration and the γ-ray intensities of the experiment and the conversion coefficients of Ref. [14], $q^2 = 4.3(7)$ was obtained [17]. Estimating the electronic factor with the method of Kantele [9] as $\Omega = 7.04 \cdot 10^{10}$ s$^{-1}$, the ratio of the reduced transition probabilities is $X(E0/E2; 0_2^+ \rightarrow 0_1^+)$ = 0.18(4). The deformation parameter β in this case takes a somewhat larger value, $\beta = 0.22(13)$ compared to the deformation parameters of the $N = 90$ nuclei from Table 2.

Theoretical calculations

The $X(5)$ critical point symmetry [1] is a solution of the Bohr Hamiltonian with a special choice of the potential: $v(\beta, \gamma) = u(\beta) + v(\gamma)$. This potential allows an approximate separation of variables and then the potential in β is chosen as an infinite square well. This choice comes from the fact that, using the coherent state formalisms in the IBM, one can obtain the potential that (only) at the critical point goes as $\sim \beta^4$ and therefore it can be approximated with an infinite square well [18]. In a similar way, for the $U(5) - SU(3)$ first order shape phase transition, a more general potential in β can be introduced, the "Lo Bianco
potential", that is parametrized as follows:

\[u(\beta) = V_0(\zeta\beta^4 - 2\zeta\beta_0/\beta^3 + (1 - \zeta)\beta_0^2/\beta^2), \quad (5) \]

with \(0 < \zeta < 1 \). When \(\zeta = 0 \) there is a spherical minimum, at the critical point with \(\zeta = 1/2 \) there are two coexisting minima (with a very small bump in between), one in \(\beta = 0 \) and the other in \(\beta = \beta_0 \), and at \(\zeta = 1 \) there is only a unique deformed minimum in \(3/2\beta_0 \). This potential has the virtue of covering the whole transitional path of the shape phase transition at the price of having three parameters instead of the parameter-free predictions of the \(X(5) \) model. The parameters, especially \(V_0 \), can be adjusted according to phenomenology to reproduce a subset of low-lying energy levels. Results for the excitation spectra of \(^{160}\text{Er} \) are displayed in Figure 4.

The calculations indicate that \(^{156}\text{Dy} \) lies in the spherical region, \(\zeta \approx 0.1 \), while \(^{160}\text{Er} \) is rather close to the critical point, \(\zeta \approx 0.53 \), but the deformed minimum is already winning. Matrix elements of the \(E0 \) operator between \(0^+ \) states in \(^{156}\text{Dy} \) and \(^{160}\text{Er} \) were obtained, which allows a straightforward calculation of the \(E0 \) strength [12]. However, the comparison with the experimental data is not very good because the model underestimates the experimental results by a factor of four. One could wonder whether this is a shortcoming of the collective model, rather than attributing it to details of the potential.

![Figure 4](image_url)
Conclusions

The ratios of the reduced transition probabilities $X(E_0/E_2)$ in 156Dy and 160Er have been measured and compared with calculations using a potential, which is a combination of quadratic, cubic and quartic powers of β. The results indicate that 156Dy is rather in the spherical region, while 160Er is located in the deformed region, but quite close to the critical point for the $U(5) - SU(3)$ first order shape phase transition.

Acknowledgements

This work is supported by the Bulgarian National Science Fund, grants DID-02/12, DRNF-02/5 and DNTS-02/21 and by the Italian INFN GAMMA collaboration.

References