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Abstract. We illustrate and discuss the role of meson-exchange currents in
quasielastic neutrino-nucleus scattering induced by charged currents, comparing
the results with the recent MiniBooNE data for differential and integrated cross
sections.

1 Introduction

The double differential quasielastic cross section for the charged-current quasielas-
tic (CCQE) neutrino-nucleus process has been recently measured for the first
time by the MiniBooNE collaboration at Fermilab [1]. Unexpectedly, the data
turned out to be substantially underestimated by the relativistic Fermi gas (RFG)
model used in the experimental analysis, as well as by several more realistic nu-
clear models. Indeed a phenomenological model based on electron scattering
data, the super-scaling approach (SuSA) [2], which describes by construction
the world data on quasielastic electron scattering, yields cross sections which
are lower than the RFG predictions and therefore in worse agreement with the
neutrino data.

This outcome has been initially ascribed [1] to an anomalously large value
of the nucleon axial mass MA, namely the cutoff parameter entering the dipole
axial form factor: in order to fit the data within the RFG model a value MA =
1.35 GeV/c2 is required, significantly larger than the universally accepted value
MA � 1 GeV/c2 [3]. An even larger axial mass would be required in the SuSA
model. Similar results are found in the context of microscopical models such
as the ones based on relativistic mean field theory [4, 5] or realistic structure
functions [6], which have been widely tested against electron scattering.

However, as stressed in Ref. [2], effects from meson exchange currents and
their associated correlations are not accounted for in the SuSA approach, since
they violate scaling of both kinds- that is, the corresponding superscaling func-
tion does depend on the momentum tranfer and on the nuclear target, as shown in
Refs. [7–9] – and were therefore ignored in analyzing the electron scattering data
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in terms of superscaling. Although the effect of two-body currents in not very
sizable at the quasielastic peak in electron scattering, it can be more significant
in quasielastic neutrino scattering due to the different kinematical conditions.
In fact in this case the neutrino beam is not monochromatic, but a wide energy
range is spanned by the neutrino flux (from 0 to 3 GeV for MiniBooNE): an
event is classified as “quasielastic” if no pions are present in the final state, but it
does not necessarily correspond to one-nucleon knockout. In the calculations of
Refs. [10] and [11] it has been shown that multinucleon channels can account for
the behavior of the CCQE cross sections without need of an anomalously large
axial mass. On the other hand a different model, based on the relativistic Green’s
function framework, is also able to describe the experimental without the need
to modify the nucleon axial mass, as recently shown on Ref. [12]. Hence, before
drawing any conclusion on the nucleon axial mass as extracted from neutrino
data, a careful evaluation of all nuclear effects and of the relevance of multinu-
cleon emission and of some non-nucleonic contributions is required.

A further point we would like to stress is that the kinematics of ongoing
and future neutrino experiments demands relativity as an essential ingredient
and traditional non-relativistic models are questionable in this regime. Here we
shall present a fully relativistic model for the meson exchange currents (MEC)
associated to the pion and discuss the corresponding results for both electron and
neutrino reactions. Further details and results can be found in Refs. [7,8,13–15].

2 Meson Exchange Currents

Meson exchange currents are two-body currents carried by a virtual meson ex-
changed between two nucleons in the nucleus. The MEC considered in this
work are represented by the Feynman diagrams of Figure 1, where the dashed
line represents a pion.

Figure 1. Two-body meson-exchange currents. (a) and (b): “contact”, or “seagull” dia-
grams; (c): “pion-in-flight” diagram; (d)-(g): “Δ-MEC diagrams (the thick lines repre-
sent the propagator of the Δ-resonance).

2



Meson Exchange Currents and Quasielastic Neutrino Cross Sections

Assuming pseudo-vector nucleon-pion coupling, the fully relativistic MEC
matrix elements can be classified as follows [7, 8]:

1) Seagull or contact (diagrams a-b)

jμ
s =

f2

m2
π

iε3abu(p′
1)τaγ5K1u(p1)

FV
1

K2
1 −m2

π

× u(p′
2)τbγ5γ

μu(p2) + (1 ↔ 2) .

2) Pion-in-flight (diagram c)

jμ
p =

f2

m2
π

iε3ab
Fπ(K1 −K2)μ

(K2
1 −m2

π)(K2
2 −m2

π)

× u(p′
1)τaγ5K1u(p1)u(p′

2)τbγ5K2u(p2) .

In the aboveFV
1 andFπ are the electromagnetic isovector nucleon and pion form

factors, respectively and f2/4π = 0.08 is the pion-nucleon coupling constant.
3) Δ current (diagrams d-g)

jμ
Δ =

fπNΔf

m2
π

1
K2

2 −m2
π

u(p′
1)T

μ
a (1)u(p1)u(p′

2)τaγ5K2u(p2) + (1 ↔ 2) .

The vector T μ
a (1) is related to the pion electroproduction amplitude

T μ
a (1) = K2αΘαβGΔ

βρ(H1 +Q)Sρμ
f (H1)TaT

†
3

+ T3T
†
aS

μρ
b (P ′

1)G
Δ
ρβ(P ′

1 −Q)ΘβαK2α

and involves the forward and backward Δ electroexcitation tensors:

Sρμ
f (H1) =Θρμ

(
g1Q− g2H1 ·Q+ g3Q

2
)
γ5

− ΘρνQν (g1γμ − g2H
μ
1 + g3Q

μ) γ5

Sρμ
b (P ′

1) =γ5

(
g1Q− g2P

′
1 ·Q− g3Q

2
)
Θμρ

− γ5 (g1γμ − g2P
′
1
μ − g3Q

μ)QνΘνρ ,

where gi are the electromagnetic coupling constants, Θμν = gμν − 1
4γμγν and

GΔ
βρ(P ) = − P +mΔ

P 2 −m2
Δ

(
gβρ − 1

3
γβγρ − 2

3
PβPρ

m2
Δ

− γβPρ − γρPβ

3mΔ

)
is the Rarita-Schwinger Δ propagator. Moreover we perform the substitution
mΔ → mΔ + i

2Γ(P ) in the denominator of the propagator to account for the Δ
decay probability. Our approach for the Δ follows, as a particular case, from the
more general form of the γNΔ Lagrangian of Pascalutsa et al. [16].

The MEC are not the only two-body operators able to induce 2p-2h excita-
tions. The correlation operators, arising from the Feynman diagrams of Figure 2,
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Figure 2. Two-body correlation currents.

are of the same order as the MEC in the perturbative expansion and should be
included in order to preserve the gauge invariance of the theory. Their explicit
expression can be found in Ref. [7].

In the next Subsections we shall illustrate the impact of these currents in
electron and neutrino scattering.

2.1 Electron Scattering

Meson exchange currents are carried by a virtual meson which is exchanged be-
tween two nucleons in the nucleus. Being two-body currents, the MEC can ex-
cite both one-particle one-hole (1p-1h) and two-particle two-hole (2p-2h) states.

In the 1p-1h sector, MEC studies of electromagnetic (e, e′) process have
been performed for low-to-intermediate momentum transfers (see, e.g., [7, 8,
17, 18]), showing a small reduction of the total response at the quasielastic
peak, mainly due to diagrams involving the electroexcitation of the Δ resonance.
However pionic correlation contributions, where the virtual boson is attached to
one of the two interacting nucleons, have been shown to roughly compensate the
pure MEC contribution [7, 8, 17, 18], so that in first approximation the contribu-
tion of two-body currents in the 1p-1h sector can be neglected.

In the 2p-2h sector, the contribution of pionic two-body currents to the elec-
tromagnetic response was first calculated in the Fermi gas model in Refs. [19,
20], where sizable effects were found at large energy transfers. In these ref-
erences a non-relativistic reduction of the currents was performed, while fully
relativistic calculations have been developed more recently in Refs. [15, 21, 22].
In [22] only the pure MEC were considered, while in [15] the correlation dia-
grams were also included. The latter present the problem of giving an infinite
answer in a Fermi gas model, due to a nucleon propagator that can be on-shell
in the region of the quasielastic peak and gives rise to a double pole inside the
integral. Various prescriptions have been followed in order to avoid this prob-
lem [23–25], which is intrinsically related to the infinite extension of the Fermi
gas. In Ref. [15] we have dealt with the above divergence by means a regulariza-
tion parameter εwhich accounts for the finite size of the nucleus. An exploratory
study of the results has shown that a reasonable assumption for the regularization
parameter, related to the propagation time of a real nucleon inside the nucleon,
is ε ∼ 200 MeV, appreciably larger than the usual values of the nucleon width
for collisions.
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Figure 3. (Color online) Transverse response of 56Fe at q = 550 and 1140 MeV/c.
Dashed: RFG 1p-1h response with OB current only. Dotted: MEC only. Thin solid (red):
Correlation only for ε = 200 MeV. Thick solid (red): total one- plus two- body responses.

In Figure 3 we show the transverse electromagnetic response function for
the 56Fe for two values of the momentum transfer, q = 550 and 1140 MeV/c.
The contribution due to the full two-body current (MEC+correlations) in the 2p-
2h sector (red, full solid) is compared with the 1p-1h response produced by the
one-body current in the free relativistic Fermi gas (dashed). The separate con-
tributions of the MEC (black, dotted) and correlations (red, thin solid) are also
shown. It appears that the MEC produce a large peak with a maximum around
ω = (m2

Δ + q2)1/2 − mN , that comes from the Δ propagator appearing in
the Δ-current. Indeed the latter turns out to dominate over the other diagrams,
pion-in-flight and seagull, and to be almost negligible in the longitudinal chan-
nel. The presence of correlations leads to an additional, significant raise of the
high energy tail. Moreover the correlation contribution, compared with the OB
responses, is similar in the T and L channels, since its relative weight is inde-
pendent of the particular component of the current (see Ref. [15]).

2.2 Neutrino Scattering

In this section we apply the model above illustrated to CCQE neutrino scattering,
implementing it in the phenomenological SuSA approach.

The CCQE neutrino-nucleus double differential cross section can be written
according to a Rosenbluth-like decomposition as [2][

d2σ

dTμd cos θ

]
Eν

= σ0

[
V̂LRL + V̂TRT + V̂T ′RT ′

]
, (1)

where Tμ and θ are the muon kinetic energy and scattering angle, Eν is the
incident neutrino energy, σ0 is the elementary cross section, V̂i are kinematic
factors and Ri are the nuclear response functions, the indices L, T, T ′ referring
to longitudinal, transverse, transverse-axial, components of the nuclear current,
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respectively. The response functions RL and RT have both “VV” and “AA”
components (stemming from the product of two vector or axial currents, respec-
tively), whereas the axial response RT ′ arises from the interference of the axial
and vector nuclear currents.

The SuSA approximation consists in modifying the well-known RFG re-
sponse functions by replacing the free Fermi gas parabolic scaling function with
the phenomenological scaling function f extracted from electron scattering ex-
perimental data [26, 27]. On the basis of the SuSA result, we have modified
the nuclear responses according to the RFG predictions, as described in the pre-
vious section, to account for the effect of the MEC. As previously explained,
we can neglect in first approximation the MEC in the 1p-1h sector and restrict
our attention to 2p-2h final states. Moreover, in lowest order the MEC affect
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Figure 4. Flux-integrated νμ-12C CCQE double differential cross section per target nu-
cleon evaluated in the SuSA model with and without inclusion of 2p2h MEC displayed
versus the muon kinetic energy Tμ for various bins of the muon scattering angle cos θ.
Here and in the following figures the data are from MiniBooNE [1].

6



Meson Exchange Currents and Quasielastic Neutrino Cross Sections

RMF
SuSA+MEC

SuSA
RFG
data

cos θ

d
σ
/d

co
s
θ

(1
0−

3
9

cm
2
)

10.50-0.5-1

25

20

15

10

5

0

Figure 5. (Color online) Flux-averaged cross section integrated over the scattering angle
and displayed versus the muon kinetic energy.

only the transverse polar vector response RV V
T , since they are negligible in the

longitudinal channel and suppressed in transverse axial channel.
The corresponding results are shown in Figure 4, where the double differ-

ential CCQE cross sections obtained in the SuSA approach, with and without
inclusion of MEC, are compared with the MiniBooNE data after averaging over
the experimental neutrino flux.

It appears the 2p-2h MEC tend to increase the cross section, yielding reason-
able agreement with the data for not too high scattering angles (up to cos θ �
0.6). At larger angles the disagreement with the experiment becomes more and
more significant and the meson-exchange currents are not sufficient to account
for the discrepancy.

The single differential cross sections with respect to the muon kinetic energy
and scattering angle, respectively, are presented in Figures 5 and 6, where the
relativistic Fermi gas (RFG) and relativistic mean field (RMF) results are also
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Figure 6. (Color online) Flux-averaged cross section integrated over the muon kinetic
energy and displayed versus the scattering angle.
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Figure 7. (Color online) Total CCQE cross section per neutron versus the neutrino en-
ergy. The curves corresponding to different nuclear models are compared with the flux
unfolded MiniBooNE data [1].

shown for comparison: again it appears the inclusion of 2p-2h excitations leads
to a good agreement with the data at high Tμ, but strength is still missing at the
lower muon kinetic energies (namely higher energy transfers) and higher angles.

Finally, in Figure 7 the fully integrated CCQE cross section per neutron is
displayed versus the neutrino energy and compared with the experimental flux-
unfolded data. Besides the models above discussed, we show for comparison
also the results of the relativistic mean field model when the final state interac-
tions are ignored (denoted as RPWIA - relativistic plane wave impulse approx-
imation) or described through a real optical potential (denoted as rROP). Note
that the discrepancies between the various models, observed in Figures 5 and
6, tend to be washed out by the integration, yielding very similar results for the
models that include final state interactions (FSI) (SuSA, RMF and rROP), all of
them giving a lower total cross section than the models without FSI (RFG and
RPWIA). On the other hand the SuSA+MEC curve, while being closer to the
data at high neutrino energies, has a somewhat different shape with respect to
the other models, in qualitative agreement with the calculation of [11].

Some caution should be expressed before drawing definitive conclusions
from the agreements or disagreements seen in the results. For instance, there
are strong indications from RMF studies as well as from QE (e, e′) data that the
vector transverse response should be enhanced over the strict SuSA strategy em-
ployed here. Moreover, the correlation contributions, as shown in the previous
section, are non-negligible in electron scattering when calculated in the RFG
framework and should in principle be considered. However, besides the strong
model dependence of these contributions, associated to the already mentioned
problem of the double pole, it is difficult to implement them in the SuSA model
since some correlation effects may be already accounted for by the phenomeno-
logical scaling function, and simply summing the effects of RFG-based corre-
lation diagrams to the SuSA responses would lead to double counting. Work is
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Figure 8. (Color online) Solid lines (red online): flux-integrated cross sections calculated
in the SuSA model for a specific bin of scattering angle. Dashed lines (green online): a
lower cut ω = 50 MeV is set in the integral over the neutrino flux.

in progress to consistently include the correlation contribution in a microscopic
relativistic model.

A last comment is in order concerning the comparison with the data: the
average over the neutrino energy flux may require to account for effects not in-
cluded in models devised for quasi-free scattering. This is, for instance, the
situation at the most forward scattering angles, where a significant contribution
in the cross section comes from very low-lying excitations in nuclei [13]. This is
clearly illustrated in Figure 8, where the double differential cross section is eval-
uated in the SuSA model at the MiniBooNE kinematics and the lowest angular
bin and compared with the result obtained by excluding the energy transfers
lower than 50 MeV from the flux-integral. At these angles 30-40% of the cross
section corresponds to very low energy transfers, where collective effects domi-
nate and any approach based on impulse approximation is inadequate to describe
the nuclear dynamics.

3 Conclusion

In summary, we have shown that 2p-2h meson exchange currents play an impor-
tant role in CCQE neutrino scattering and may help to resolve the controversy on
the nucleon axial mass raised by the recent MiniBooNE data. In our approach
two-body currents arise from microscopic relativistic modeling performed for
inclusive electron scattering reactions and they are known to result in a signif-
icant increase in the vector-vector transverse response function, in concert with
QE electron scattering data. It should, however, be remembered that the present
approach, when applied to neutrino scattering, still lacks the contributions from
the correlation diagrams associated with the MEC which are required by gauge
invariance; these might improve the agreement with the data, as suggested by
the results for inclusive electron scattering.
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