
NUCLEAR THEORY, Vol. 30 (2011)
eds. A. Georgieva, N. Minkov, Heron Press, Sofia

Conformal Maps and Group Contractions in
Nuclear Structure

D. Bonatsos

Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia
Paraskevi, Attiki, Greece

Abstract.

In mathematics, a conformal map is a function which preserves angles. We
show how this procedure can be used in the framework of the Bohr Hamiltonian,
leading to a Hamiltonian in a curved space, in which the mass depends on the
nuclear deformation β, while it remains independent of the collective variable γ
and the three Euler angles. This Hamiltonian is proved to be equivalent to that
obtained using techniques of Supersymmetric Quantum Mechanics.

Group contraction is a procedure in which a symmetry group is reduced into
a group of lower symmetry in a certain limiting case. Examples are provided
in the large boson number limit of the Interacting Boson Approximation (IBA)
model by a) the contraction of the SU(3) algebra into the [R5]SO(3) algebra of
the rigid rotator, consisting of the angular momentum operators forming SO(3),
plus 5 mutually commuting quantities, the quadrupole operators, b) the contrac-
tion of the O(6) algebra into the [R5]SO(5) algebra of the γ-unstable rotator.
We show how contractions can be used for constructing symmetry lines in the
interior of the symmetry triangle of the IBA model.

1 Introduction

The Interacting Boson Approximation (IBA) model [1] and the collective model
of Bohr [2] provide complementary descriptions of the properties of medium-
mass and heavy nuclei.

In the present work we first show how the Bohr Hamiltonian can be general-
ized into a curved space [3]. This generalization turns out to be equivalent to the
use of a nuclear mass which is not a constant, as in the usual case, but depends
on the nuclear deformation. This modification solves [3] a long-standing prob-
lem of nuclear structure, namely the too rapid increase of the moment of inertia
with deformation [4].

Furthermore in this work we are going to show [5] how the mathematical
concept of group contraction [6] can be used for determining approximate sym-
metries in the framework of the IBA model [1]. In particular, an approximate
SU(3) symmetry will be determined within the symmetry triangle [7] of the IBA
model, at the vertices of which the dynamical symmetries of the model appear.
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2 Conformal maps

2.1 A formulation of the Bohr Hamiltonian

The original Bohr Hamiltonian [2] is

HB = − �
2

2B

[
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1
4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
⎤⎦+ V (β, γ), (1)

where β and γ are the usual collective coordinates (β being a deformation coor-
dinate measuring departure from spherical shape, and γ being an angle measur-
ing departure from axial symmetry), while Qk (k = 1, 2, 3) are the components
of angular momentum in the intrinsic frame, andB is the mass parameter, which
is usually considered constant.

In Ref. [8] it has been proved that the position-dependent effective mass
formalism can be equivalently expressed in a curved space. We shall prove here
that this connection is possible also in the case of the Bohr Hamiltonian.

Ordering the coordinates as

q1 = Φ, q2 = Θ, q3 = ψ, q4 = β, q5 = γ, (2)

the kinetic energy in the standard Bohr Hamiltonian [2] can be represented as

T =
B

2

(
ds

dt

)2

, (3)

where
ds2 = gijdqidqj , (4)

the symmetric matrix gij having the form

(gij) =

⎛⎜⎜⎜⎜⎝
g11 g12 g13 0 0
g21 g22 0 0 0
g31 0 g33 0 0
0 0 0 g44 0
0 0 0 0 g55

⎞⎟⎟⎟⎟⎠ , (5)

with

g11 =
J1

B
sin2 Θ cos2 ψ +

J2

B
sin2 Θ sin2 ψ +

J3

B
cos2 Θ, (6)

g12 =
1
B

(J2 − J1) sin Θ sinψ cosψ, g13 =
J3

B
cosΘ, (7)

g22 =
J1

B
sin2 ψ +

J2

B
cos2 ψ, g33 =

J3

B
, g44 = 1, g55 = β2, (8)
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where the moments of inertia are

Jk = 4Bβ2 sin2

(
γ − k

2π
3

)
. (9)

The determinant of the matrix is

g =
J1J2J3

B3
β2 sin2 Θ = 4β8 sin2 3γ sin2 Θ. (10)

The relevant volume element is then

dV = 2β4 sin 3γ sinΘdΦdΘdψdβdγ. (11)

The inverse matrix is found to be

(g−1
ij ) =

⎛⎜⎜⎜⎜⎝
g−1
11 g−1

12 g−1
13 0 0

g−1
21 g−1

22 g−1
23 0 0

g−1
31 g−1

32 g−1
33 0 0

0 0 0 g−1
44 0

0 0 0 0 g−1
55

⎞⎟⎟⎟⎟⎠ , (12)

with

g−1
11 =

B

sin2 Θ

(cos2 ψ
J1

+
sin2 ψ

J2

)
, (13)

g−1
12 = −B

( 1
J1

− 1
J2

) sinψ cosψ
sinΘ

, (14)

g−1
13 = −B

(cos2 ψ
J1

+
sin2 ψ

J2

)cotΘ
sin Θ

, g−1
22 = B

( sin2 ψ

J1
+

cos2 ψ
J2

)
, (15)

g−1
23 = B

( 1
J1

− 1
J2

)
cotΘ sinψ cosψ, (16)

g−1
33 = B

(cos2 ψ
J1

+
sin2 ψ

J2

)
cot2 Θ +

B

J3
, g−1

44 = 1, g−1
55 =

1
β2
. (17)

Using these matrix elements and the value of the determinant from Eq. (10) in
the usual Pauli–Podolsky prescription [9]

(∇Φ)i = gij ∂Φ
∂xj

, ∇2Φ =
1√
g
∂i
√
ggij∂jΦ, (18)

we obtain

T = − �
2

2B
∇2 = − �

2

2B

[
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1
4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
⎤⎦ , (19)
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where Qk are the components of the angular momentum in the intrinsic frame

Qx = −i
(
− cosψ

sinΘ
∂

∂Φ
+ sinψ

∂

∂Θ
+ cotΘ cosψ

∂

∂ψ

)
, (20)

Qy = −i
(
− sinψ

sin Θ
∂

∂Φ
+ cosψ

∂

∂Θ
− cotΘ sinψ

∂

∂ψ

)
, Qz = −i ∂

∂ψ
. (21)

2.2 Transition to a curved space

The connection between the position-dependent effective mass and curved spaces
has been considered in Ref. [8]. According to the findings of Ref. [8], one ex-
pects in the present case all elements of the matrix (5) to be divided by f2

g′ij =
gij

f2
, (22)

where f is a function of β, which will appear in the next subsection. As a result,
the determinant of the matrix will be

g′ =
g

f10
, (23)

and the volume element will be

dV ′ =
dV

f5
. (24)

The elements of the inverse matrix will be

g′−1
ij = f2g−1

ij . (25)

2.3 Equivalence to the deformation-dependent mass case

In Ref. [3] the Bohr equation with a mass depending on the deformation

B(β) =
B0

(f(β))2
, (26)

whereB0 is a constant, has been considered, leading to a modified Bohr equation
of the form

HΨ =
[
−1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f − f2

2β2 sin 3γ
∂

∂γ
sin 3γ

∂

∂γ

+
f2

8β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
) + veff

⎤⎦Ψ = εΨ, (27)
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where reduced energies ε = B0E/�
2 and reduced potentials v = B0V/�

2 have
been used, with

veff = v(β, γ) +
1
4
(1 − δ − λ)f∇2f +

1
2

(
1
2
− δ

)(
1
2
− λ

)
(∇f)2. (28)

According to Ref. [8], in order to obtain the Schrödinger equation in the
form of Eq. (27), one has to start with the equation

HgΨ̃ =
[
−1

2
∇2 + ug

]
Ψ̃ =

[
−1

2
1√
g′
∂i

√
g′g′−1

ij ∂j + ug

]
Ψ̃, (29)

where
Ψ̃ = f5/2Ψ, (30)

while reduced energies and reduced potentials are used, as in Eq. (27). The
exponent in the last equation is related to the dimensionality of the space.

Substituting the g′ matrix elements and determinant in Eq. (29), and per-
forming the relevant calculation (which closely resembles the pure Bohr case,
except for the 44-term), we see that Eqs. (29) and (27) do coincide with

ug = ueff + f f̈ − 2(ḟ)2 + 4
f ḟ

β
, ḟ =

df

dβ
, f̈ =

d2f

dβ2
. (31)

2.4 Discussion

This result has several important consequences.
1) It becomes clear that solving the Schrödinger equation (27) with defor-

mation dependent mass is equivalent to solving a modified Bohr equation (29)
with different metric matrix g′ and another effective potential, ug. Between the
two equivalent schemes, one chooses to solve Eq. (27) instead of Eq. (29),
just because the former can be solved analytically through the use of SUSYQM
techniques [10].

2) The wave functions Ψ̃ = f5/2Ψ are accompanied by the volume element
dV ′ = dV/f5. As a result∫

Ψ̃∗Ψ̃dV ′ =
∫

(f5/2Ψ∗)(f5/2Ψ)
dV

f5
=
∫

Ψ∗ΨdV, (32)

i.e., the wave functions Ψ of the deformation dependent mass problem corre-
spond to the usual Bohr volume element dV .

3) The simple relation between Ψ̃ and Ψ also shows that the wave functions
Ψ satisfy the well-known 24 symmetries of Bohr wave functions [2], which the
wave functions Ψ̃ satisfy by construction. If these symmetries were not satisfied,
the solutions could not have been used for the description of nuclei.

The solution of Eq. (27) using SUSYQM techniques [3] is described in
this conference by P. E. Georgoudis [11]. The particular case of the Davidson
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potential [12]

u(β) = β2 +
β4

0

β2
, (33)

where the parameter β0 indicates the position of the minimum of the poten-
tial, is used. Using SUSYQM techniques it turns out that in this case the Bohr
Hamiltonian with mass dependent on the deformation is exactly soluble if the
deformation function is of the form

f(β) = 1 + aβ2, a� 1. (34)

Numerical results for spectra andB(E2) transition rates for about 50 γ-unstable
nuclei and 50 deformed nuclei have been obtained [3] and compared to experi-
mental data, with positive results.

3 Group contractions

3.1 The SU(3)→ [R5]SO(3) contraction

The SU(3)→ [R5]SO(3) contraction [13, 14] is a procedure in which the full
SU(3) algebra, consisting of 8 noncommuting generators, is shrinked into an
SO(3) algebra (consisting of 3 noncommuting generators), accompanied by 5
mutually commuting operators (the quadrupole operators). This simplification
occurs in the limit of large boson number in which, in SU(3), all intrinsic exci-
tations rise in energy, isolating the ground state band so that SU(3) goes over,
approximately, into a simple rigid rotator. The resulting algebraic structure is,
indeed, known [15] to be the algebra of the rigid rotator.

The SU(3) commutation relations read

[L̂ξ, L̂ν] = −
√

2(1ξ1ν|1ξ + ν)L̂ξ+ν , (35)

[L̂ξ, Q̂
(2)
SU(3),ν ] = −

√
6(1ξ2ν|2ξ + ν)Q̂(2)

SU(3),ξ+ν , (36)

[Q̂(2)
SU(3),ξ, Q̂

(2)
SU(3),ν ] =

3
4

√
5
2
(2ξ2ν|1ξ + ν)L̂ξ+ν . (37)

The second order Casimir operator is

Ĉ2[SU(3)] =
2
3

[
2Q̂(2)

SU(3) · Q̂(2)
SU(3) +

3
4
L̂ · L̂

]
, (38)

while its eigenvalues in the Elliott basis, (λ, μ), are

C2(λ, μ) =
2
3
(λ2 + μ2 + λμ+ 3λ+ 3μ). (39)

If we consider SU(3) irreducible representations (irreps) with large values of
C2(λ, μ), that is for large boson numbers, we can rescale the quadrupole opera-
tor as

q̂
(2)
SU(3),ξ =

Q̂
(2)
SU(3),ξ√
C2(λ, μ)

. (40)
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The first two commutation relations remain unchanged by the rescaling, while
the last one becomes

[q̂(2)SU(3),ξ, q̂
(2)
SU(3),ν ] =

3
4

√
5
2
(2ξ2ν|1ξ + ν)

L̂ξ+ν

C2(λ, μ)
. (41)

Then in the limit of large values of C2(λ, μ) one gets

[q̂(2)SU(3),ξ, q̂
(2)
SU(3),ν ] = 0. (42)

This result, which is obtained for large boson number, is called the contraction
of SU(3) to [R5]SO(3), where [R5]SO(3) is the algebra of the rigid rotator [15],
generated by the angular momentum operators of SO(3) and the five commuting
operators q̂(2)SU(3),ξ, ξ = −2,−1, 0, 1, 2.

An immediate consequence of Eqs. (41) and (42) is that, in the contraction
limit, terms proportional to the angular momentum L̂ can be ignored. In the IBA
framework, in which L̂ is proportional to (d†d̃)(1), this implies that (d†d̃)(1)

terms can be ignored.
In the limit of large values of C2(λ, μ) and λ ≥ μ the intrinsic quadrupole

moments become [14]

q0 =
1

2
√

2
(2λ+ μ+ 3), q2 =

1
4

√
3(μ−K)(μ+K + 2), (43)

where K is the eigenvalue of the angular momentum projection on the body-
fixed z-axis, for which K ≤ L is valid, as one can see from the algorithm of the
SU(3)⊃SO(3) reduction [1]. For states with λ� L (therefore also λ� K) and
λ� μ one then obtains [13]

q0 =
λ√
2
, (44)

while q2 becomes negligible. Since the ground state band belongs to the (2N, 0)
irreducible representation (irrep) of SU(3), while other low-lying bands belong
to irreps (2N − 4i − 6j, 2i), i = 0,1,2,. . . , j = 0,1,2,. . . with relatively low i,
j, the contraction occurs in the large N limit. Thus in the case of interest the
intrinsic quadrupole moment becomes

q0 = N
√

2. (45)

An equivalent statement is that one can approximately replace the operator Q̂(2)
SU(3)

by the scalar λ/
√

2, as one can see from Eqs. (38) and (39), since the terms con-
taining L̂ and μ are negligible in this limit, having as a consequence that only the
first term in the rhs of these equations survives. A formal justification for this
replacement is given in Ref. [5], where matrix elements of the commutators of
the relevant parts of the Hamiltonian with the quadrupole operator are properly
considered, resulting in the appearance of the intrinsic quadrupole moment.

It should be noticed that the above results have been obtained in irreps with
λ� L, thus they regard the low lying part of the spectrum.
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3.2 SU(3)

In SU(3) the irreps are built out of the (2,0) irrep, while in the case of SU(3) [1]
the irreps are built out of the (0,2) irrep [1]. As a result, in the SU(3) framework
one is interested in states with large values of C2(λ, μ) and λ < μ, in which the
intrinsic quadrupole moments become [14, 16]

q0 = − 1
2
√

2
(λ+ 2μ+ 3), q2 = −1

4

√
3(λ−K)(λ+K + 2). (46)

For states with μ � L and μ � λ one then obtains

q0 = − μ√
2
, (47)

while q2 becomes negligible. Since the ground state band belongs to the (0, 2N)
irrep of SU(3), while other low-lying bands belong to irreps (2i, 2N − 4i− 6j),
i = 0,1,2,. . . , j = 0,1,2,. . . with relatively low i, j, the contraction does occur in
the large N limit, the intrinsic quadrupole moment becoming

q0 = −N√
2. (48)

Since SU(3) is associated to prolate shapes, while SU(3) is related to oblate
shapes, the signs in Eqs. (45) and (48) are consistent with the fact that intrinsic
quadrupole moments are known to be positive for prolate nuclei and negative for
oblate nuclei [7].

The first contraction has been used in Ref. [5] for determining a line of
approximate SU(3) symmetry inside the symmetry triangle of the IBA, as de-
scribed by S. Karampagia in this conference [17].

3.3 The O(6)→ [R5]SO(5) contraction

A procedure similar to that of subsection 3.1 is followed in the contraction of
O(6) to [R5]SO(5) [18, 19]. This is a procedure in which the full O(6) algebra,
consisting of 15 noncommuting generators, is shrinked into an SO(5) algebra
(consisting of 10 noncommuting generators), accompanied by 5 mutually com-
muting operators (the quadrupole operators). The resulting algebraic structure
is known [19] to be the algebra of the γ-unstable rotator.

The commutation relation for the quadrupole operators reads

[Q̂(2)
O(6),ξ, Q̂

(2)
O(6),ν ] = 2

∑
k=1,3

(2ξ2ν|kξ + ν)(d†d̃)(k)
ξ+ν . (49)

The second order Casimir operator is [1]

Ĉ2[O(6)] = 2Q̂(2)
O(6) · Q̂(2)

O(6) + 4
∑

k=1,3

(d†d̃)(k) · (d†d̃)(k). (50)
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Its eigenvalues are
C2(σ) = 2σ(σ + 4), (51)

where σ is the quantum number characterizing the irreps of O(6).
If we consider O(6) irreps with large σ, we can rescale the quadrupole oper-

ator as

q̂
(2)
O(6),ξ =

Q̂
(2)
O(6)),ξ√
C2(σ)

. (52)

Then the commutation relation for the quadrupole operators becomes

[q̂(2)O(6),ξ, q̂
(2)
O(6),ν ] = 2

∑
k=1,3

(2ξ2ν|kξ + ν)
(d†d̃)(k)

ξ+ν

C2(σ)
. (53)

Then in the limit of large σ (and small τ , where τ is the quantum number char-
acterizing the irreps of O(5) ) [19] one gets

[q̂(2)O(6),ξ, q̂
(2)
O(6),ν ] = 0. (54)

This procedure is called the contraction of O(6) to [R5]SO(5), where [R5]SO(5)
is the algebra of the γ-unstable rotator, generated by the operators of SO(5)
and the five commuting operators q(2)O(6),ξ, ξ = −2,−1, 0, 1, 2, which are the
coordinates [19].

An immediate consequence of Eqs. (53) and (54) is that, in the contraction
limit, terms proportional to (d†d̃)(k) can be ignored.

The most leading O(6) irrep, to which the ground state band belongs, is (N).
Thus in the large boson number limit it is appropriate to use this contraction.
The intrinsic quadrupole moment will then be

q′0 = σ, (55)

as can be seen from Eqs. (50) and (51). Thus in the case of interest the intrinsic
quadrupole moment becomes

q′0 = N. (56)

It should be noticed that the above results have been obtained in irreps with
σ � τ , thus they regard the low lying part of the spectrum (since L ≤ 2τ , as
seen from the algorithm of the SO(5)⊃SO(3) reduction [1]).

3.4 Application

The first contraction has been used in Ref. [5] for determining a line of ap-
proximate SU(3) symmetry inside the symmetry triangle of the IBA model, as
described by S. Karampagia in this conference [17]. This line lies very close
to the Alhassid–Whelan arc of regularity [20, 21], corroborating an underlying
approximate SU(3) symmetry [22] as the reason for the existence of this region
of regularity among chaotic regions in the symmetry triangle of the IBA model.
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4 Conclusion

We have shown how conformal maps can be used for introducing a deformation-
dependent mass in the Bohr collective model, as well as how group contractions
can be used for determining approximate symmetries within the symmetry tri-
angle of the Interacting Boson Approximation model.
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