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Abstract. An extended pairing-plus-quadrupole model is introduced. The pair-
ing part of the Hamiltonian consists of pp-, nn- and pn-pairing terms and terms
describing the pair-scattering between two oscillator shells. Energy spectra and
shape parameters for nuclei from different shells are calculated and the role of
the two parts in the interaction depending on the parameter strengths is discussed
in detail. This investigation is the initial step towards creating an extended two-
shell version of the microscopic (pseudo-)SU(3) shell model.

1 Introduction

In order to build a complete shell-model theory, intruder opposite-parity levels
from the upper shell need to be included in the model space, especially if ex-
perimentally observed high-spin or negative-parity states are to be described.
Intruder levels are present in heavy deformed nuclei where the strong spin-orbit
interaction destroys the underlying harmonic oscillator symmetry of the nuclear
mean-field potential. The role they play for the overall dynamics of the system
has been the topic of many questions and debates [1–4]. Until now, the prob-
lem has been either approached within the framework of a truncation-free toy
model [1] or by just considering the role of the single intruder level detached
from its like-parity partners [2, 4]. It was argued in [1] that particles in these
levels contribute in a complementary way to building the collectivity in nuclei.
However, some mean-field theories suggest that these particles play the domi-
nant role in inducing deformation [3].

Up to now, algebraic methodologies based on the existing good SU(3) [5] or
pseudo-SU(3) symmetry [6] have not been applied to nuclei with mass numbers
A = 56 to A = 100, which is an intermediate region where conventional wis-
dom suggests the break down of the assumptions that underpin their use in the
other domains. In particular, the g9/2 intruder level that penetrates down from
the shell above due to the strong spin-orbit splitting appears to be as spectro-
scopically relevant to the overall dynamics as the normal-parity f5/2, p3/2, p1/2

levels. Specifically, in this region the effect of the intruder level cannot be ig-
nored or mimicked through a “renormalization” of the normal-parity dynamics
which is how it has been handled to date. Moreover, both protons and neu-
trons occupy the same oscillator shells which suggests strong proton-neutron
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correlations. These facts should be addressed with the appropriate choice of a
Hamiltonian.

The purpose of the present work is to introduce a pairing-plus-quadrupole
model in two oscillator shells which, for the first time, explicitly includes par-
ticles from the complete unique-parity sector. After we shortly introduce the
basics of the model, we present some results for the ground-state properties of
two nuclear systems. Finally, we give suggestions for the use of a more realistic
Hamiltonian, which will provide an opportunity for comparison with experimen-
tal results.

2 Pairing-Plus-Quadrupole Model in Two Shells

The pairing-plus-quadrupole model, first introduced by Bohr and Mottelson and
Pines [7], and Belyaev [8], has been widely used to reproduce both few-particle
non-collective and many-particle collective features of nuclei [9–11]. It incor-
porates those features that are most important in nuclear mean-field theories: the
interaction between particles can be summed up, in a first approximation, to an
average spherical single-particle potential; and long range particle-hole correla-
tions and short-range particle-particle correlations can be taken into account by a
deformation of the field and a pairing potential, respectively [12]. The model has
never been applied for full-space calculations in more than one of the low-lying
oscillator shells or for restricted number of particles in higher-lying shells.

SU(3) realization of the pairing-plus-quadrupole model in up to two (proton
and neutron) spaces has been developed [13,14] and the effects of the quadrupole-
quadrupole, identical-particle pairing, and even single-particle interactions have
been studied. The basis states that were used in just one space were labeled as
|N [f ]α(λ, μ)κL, S; JMJ〉 for one type of particles and as

|N [f ]α(λ, μ)κL, [f c][PP ′P ′′]β(ST ); JMJMT 〉 (1)

-for proton-neutron systems. In the above expression, N denotes the number of
particles in the corresponding space, [f ] and [f c] are the spatial and its conjugate
spin-isospin symmetry labels, and (λ, μ) - the SU(3) irrep label. Multiplicity
indices α and β count different occurrences of (λ, μ) in [f ] and of (ST ) in
[PP ′P ′′] which will be explained later. These basis states are by construction
directly linked to the shell-model Lie algebra U(4Ω), which contains the SU(3)
quantum numbers (λτ , μτ ) for the proton and neutron systems. These labels
correspond to the following chain of groups typical for the SU(3) model:

U(4Ω) ⊃ [U(Ω) × U(4)] ⊃ [SU(3) × SU(4)]
⊃ [[SO(3) × SUS(2)] × SUT (2)]
⊃ [SUJ(2) × SUT (2)] ⊃ UJ(1) × UT (1). (2)

If we want to address the problem in more than one spaces (for example, four),

190



Pairing-Plus-Quadrupole Model in Two Oscillator Shells

we have to use SU(3) basis states of the type

|{aπ; aν}ρ(λ, μ)κL, {Sπ, Sν}S; JMJ〉 (3)

which are built as SU(3) proton (π) and neutron (ν) strongly-coupled config-
urations with well-defined particle number and good total angular momentum
J . Here, the proton and neutron quantum numbers are indicated by aσ =
{aσN , aσU}ρσ(λσ, μσ), where the aστ = Nστ [fστ ]αστ (λστ , μστ ) are the basis-
state labels for the four spaces in the model (σ stands for π or ν, and τ stands
for normal (N) or unique (U) parity levels). First, the particles from the normal
and the unique spaces are coupled for both protons and neutrons. Then, the re-
sulting proton and neutron irreps are coupled to a total final set of irreps. The
total angular momentum J results from the coupling of the total orbital angular
momentum L with the total spin S. The ρ and κ are, respectively, the multiplic-
ity indices for the different occurrences of (λ, μ) in {(λπ , μπ) × (λν , μν)} and
L in (λ, μ).

The SU(3) classification of many-body states has the advantage of allowing
for a geometrical analysis of the eigenstates of a nuclear system via the relations
between the microscopic parameters (λ, μ) and the collective parameters (β, γ)
of the collective model [15] and hence it gives an insight into phenomena associ-
ated with nuclear deformation. The deformation parameter β and the triaxiality
parameter γ are given by the following formulae [16]:

kβ =
2
3

√
C2 + 3 (4)

cos(3γ) =
C3

2
√

(C2 + 3)3
, (5)

Here the constant k =
√

5
9πA〈r2〉, whereA is the total number of nucleons, 〈r2〉

– the nuclear mean square radius of the system, and C2 and C3 are the invariant
Casimir operators of second and third order, respectively. This relation can be
visualized on a plot shown in Figure 1 where β is the radius vector and γ the
azimuthal angle. The (β, γ) vary continuously, while λ and μ take on positive
integer values only.

Next we explain the other labels [PP ′P ′′]β(ST ) in the basis (1) coming
from the proton-neutron pairing that we consider in the present approach. Hence
we account simultaneously for the isovector (S = 0, T = 1) and the isoscalar
(S = 1, T = 0) pairing which have the SO(8) dynamical symmetry. The prob-
lem of the classification of the states for the case of the total pairing is solved
in [17] for particles in one shell. It is also based on chain of the shell-model Lie
algebra U(4Ω) ⊃ [U(Ω) ⊃ SO(Ω)]⊗ [SUST (4) ⊃ SUS(2) ⊗ SUT (2)] and its
complementarity to the chains of subalgebras typical for the SO(8) model. For
example, the chain SO(8) ⊃ SOST (6) ⊃ SOS(3) ⊗ SOT (3) has been identi-
fied as complementary to the latter and used in the classification of the states for
a given number of nucleons. The labels [PP ′P ′′]β(ST ) are related to this last
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Figure 1. Traditional (β, γ) plot which demonstrates the relationship between the collec-
tive shape variables (β, γ) and the SU(3) irrep labels (λ, μ).

chain of groups, more specifically to the part SOST (6) ⊃ SOS(3) ⊗ SOT (3).
For a certain nucleus (good Tz value), these pairing eigenstates can also be ex-
pressed as linear combinations of the SU(3) basis states (1). Solution to the
scattering of pairs of particles between two orbitals has also been provided in
the special case of seniority ν = 0 and 1 [18].

We use a Hamiltonian that is more general by considering additionally identical-
particle pair-scattering terms (τ �= τ ′), proton-neutron terms (πν) and isoscalar
terms which is obviously a more sophisticated form of the well-known pairing-
plus-quadrupole model. It has the form

HP+Q.Q = −χ
2
Q.Q−G

∑
(JT )

{∑
σ,τ

(S+)JT
στ (S−)JT

στ

+
∑

σ,τ 
=τ ′
(S+)JT

στ (S−)JT
στ ′ +

∑
τ,τ ′

(S+)JT
πν,τ (S−)JT

πν,τ ′

}
(6)

where, for simplicity, all pairing terms are taken with the same strength. The
standard pair-creation and annihilation operators are given by

(S+)JT
στ =

1
2

∑
ηljmj

(−)l+j−mj [(a†ηljmj
)στ (a†ηlj−mj

)στ ]JT

and
(S−)στ = ((S+)στ )†.

The sum over (JT ) describes the isovector (J = 0, T = 1) and the isoscalar
(J = 1, T = 0) both at L = 0 identical-particle pairing (first term) and pair-
scattering (second term), and proton-neutron pairing and pair-scattering (third
term in the braces).
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3 Results

We present the results from calculations performed in two shells for two N = Z
nuclear systems which we, although not entirely accurate, dub 20Ne and 60Zn.
There are no imposed restrictions on the model space and we do not compare
with experimental data because the interaction (6) we use could not pretend to
be complete and realistic.

3.1 Pure Pairing Interaction in Two Shells

In Figures 2 and 3 (4 and 5), we can see the energy spectrum of the isovector-
and the total-pairing interaction for the systems 20Ne (60Zn). By definition,
the isovector pairing spectrum does not depend on the spin S and the isoscalar
part does not depend on the isospin T which makes the difference between the
Figures 2 and 3 (correspondingly 4 and 5) almost non observable. The states
are clustered in groups for the different values of the total seniority quantum
number which can be ν = 0, 2, 4 for J = 0 but only ν = 2, 4 for the remaining
J values. While the first excited state in the isovector results is due to developing
rotational features in isospace, the one in the total pairing results just reflects the
pairing gap in the lower-lying (namely ds) shell of the model space.

Figure 2. Isovector pairing for 20Ne in the dsfp shell

Figure 3. Total pairing for 20Ne in the dsfp shell.
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Figure 4. Isovector pairing for 60Zn in the upper-fp-gds shell.

Figure 5. Total pairing for 60Zn in the upper-fp-gds shell.

3.2 The Ground State: Energy and Shape

Results from calculations with the Hamiltoinan (6) of the ground-state energy
for the nuclei are presented in Figure 6. The quadrupole parameter χ takes
different values while the values G = 0.2 MeV and G = 0.1 MeV for the
pairing interaction are fixed as the ones for a typical ds-shell (fp-shell) nucleus.
For low values of the quadrupole parameter χ the isovector part has prominent
contribution which becomes comparable with the effect from the isoscalar part
for values of χ bigger than 0.04 MeV.

Finally, we calculate the expectation values of the two shape parameters -
the deformation parameter β and the triaxiality parameter γ, given by equations
(4) and (5). The results shown in Figures 7 and 8 for the ground states of the
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Figure 6. Ground-state energy for 20Ne and 60Zn in the pairing-plus-quadrupole model
in two shells.

Figure 7. Deformation parameter β for 20Ne and 60Zn in the pairing-plus-quadrupole
model in two shells.

two nuclear systems, reveal a steady rise (fall) in β (γ) for both nuclei with the
increase of the parameter χ. Beyond the point marked with an arrow in Figure 8,
the values of χ lead to eigenfunctions, composed primarily (at least 50 percent)
of the leading irreducible representation, which can also be found on both figures
under the symbol for the corresponding isotope.

4 The Extended (Pseudo-) SU(3) Model - Transition to More Elabo-
rated Hamiltonians

The above analysis is useful for further and more realistic investigation of the
role that intruder levels play in the dynamics of the system by using an extended
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Figure 8. Triaxiality parameter γ for 20Ne and 60Zn in the pairing-plus-quadrupole model
in two shells.

version of the (pseudo-)SU(3) model. It is a microscopic theory in the sense that
both SU(3) generators - the angular momentum and the quadrupole operators -
are given in terms of individual nucleon coordinate and momentum variables.
Results for the quality of the pseudo-SU(3) symmetry for the nuclei 64Ge, 68Se
[19] with realistic interactions suggest that one can perform symmetry-adapted
calculations thus reducing significantly the size of the model space.

Until recently, SU(3) shell-model calculations - real SU(3) [5] for light nu-
clei and pseudo-SU(3) [6] for heavy nuclei - have been performed in either only
one space (protons and neutrons filling the same shell, e.g. the ds shell) or
two spaces (protons and neutrons filling different shells, e.g. for rare-earth and
actinide nuclei). Number of interesting and important results for low-energy
features like energy spectra, shape description and electromagnetic transition
strengths, have been published over the years [20–22].

The Hamiltonian that one can use for extended-SU(3)-model calculations
will be of the form

H = Hs.p. +HP+Q.Q + aJ2 + bK2
J + c2C2 + c3C3. (7)

In addition to the Hamiltoian (6) it includes single-particle interaction Hs.p. as
well as four rotor-like terms. These terms - the square of the total angular mo-
mentum J2, its projection on the intrinsic body-fixed axis K2

J and the Casimir
operators of SU(3) of second and third order C2 and C3 - are used to “fine tune”
the energy spectra. The first one (J2) adjusts the moment of inertia of the ground
band, the second (K2

J) - the position of the gammaK = 2+ bandhead, the third
(C2) distinguishes representations with both λ and μ even from the others, hav-
ing zero strength in the first case and a positive value in the second, and the
fourth (C3) drives representations with μ � λ lower in energy than those with
μ� λ.
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5 Conclusion

The study presented here for the pairing-plus-quadrupole Hamiltonian in two
oscillator shells should serve as a base for more elaborated investigations of these
and other interesting nuclear systems. More sophisticated interactions should be
developed and tested in order to reveal the role of the particles from the unique-
parity sector as well as the effectiveness of various truncations on the model
space.
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