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Abstract. We introduce the symplectic extension Sp(24, R) ⊃ U(12) ⊃
Uπ(6) ⊗ Uν(6) of the proton (π)-neutron (ν) version of the prominent Inter-
acting Boson Model (IBM - 2). We consider in particular a new reduction chain
starting with the direct product Sp(4, R) ⊗ O(6), where the Sp(4, R) group
is used as a classification group for the even - even nuclei specified by the to-
tal number of bosons N , that build them and the third projection F0 of the
F−spin. This allows for a unified description of sequences of nuclei with a
general Hamiltonian in which the interaction strengths, depend on the classifi-
cation quantum numbers and interactions are expressed in terms of the Casimir
invariants of all the subgroups of O(6), defining the dynamical symmetry.

1 Introduction

Since the introduction of the first version of the Interacting Boson Model /IBM
-1/ [1] the description of the nuclear collective degrees of freedom in terms of
bosons has proved as very appropriate and is widely used by experimentalist and
theoreticians as an effective tool for the description of the rather complex and
rich nuclear spectra and transitions in particular in heavy nuclei. The mathe-
matical tool that is used is based on the algebraic constructions and their irre-
ducible representations (irreps) and proved as very efficient in its applications. It
introduces the notion of dynamical symmetries, represented by chains of group-
subgroup structures. The latter provide the corresponding phenomenological
models simultaneously with a complete orthonormal basis, labelled by the quan-
tum numbers of the algebraic irreps of the groups from the chain and respective
Hamiltonians, expressed in terms of their Casimir invariants. This leads to ex-
actly solvable limiting cases, which provide the benchmarks for the different
types of collective behavior of the many-body system.

In the IBM - 1 [1] model an s (l = 0) and a d (l = 2,m = ±2,±1, 0) bosons
are introduced as building blocks of the U(6) algebra, reduced to the SO(3) -
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algebra of the angular momentum by means of the reduction chains:

↗ U(5) −→ SO(5) ↘
U(6) −→ O(6) −→ SO(5) −→ SO(3)

↘ U(3) −→ SU(3) ↗
(1)

It has been shown in various applications [2] that each of the reduction chains in
the scheme (1) corresponds to a distinctive geometrical interpretation of the nu-
clear shape. The one trough U(5) is related to the spectra of vibrational (nearly
spherical) nuclei, the O(6) limit to the γ−unstable ones and U(3) to rotational
(axially deformed) nuclei.

In this work, we aim at the description not of a single nucleus, but of sets
of nuclei, in a way that reflects the development of collectivity in them with the
change of the number of bosons, representing pairs of valence particles. This
is achieved by introducing the symplectic extension of the boson realization of
compact unitary algebras employed in the dynamical symmetries of the IBM.
This approach will be illustrated on the example of IBM-2 version of the model,
where the proton and neutron (charge) degrees of freedom, forming two separate
spaces are introduced in [3]. In this way, the link to the underlying single-particle
shell structure is more direct and transparent.

2 Reduction Scheme for the Boson Representations of the Sp(4k,R)
Algebras

In general the boson representation of the Sp(4k,R) algebra is realized in terms
of bilinear combinations of creation a†αi and annihilation aαi operators with two
indexes, α = 1, 2; i = 1, 2, ..., k, that satisfy Bose commutation relations:

[aαi, a
†
βj] = δαβδij (2)

(all other commutators are zero). Specifically, the symplectic extension of the
u(2k) algebra to the Sp(4k,R) algebra is obtained [4], by appending the opera-
tors

a†αia
†
βj , aαiaβj, α, β = 1, 2; i, j = 1, ..., k (3)

to its Weyl generators a†αiaβj .
In the considered case, as the Greek indices take only two possible values, it

is easy to see that they actually label the two dimensional spinor representation
of su(2), with projections α = ±1/2. In most of the applications, the tensor
properties of the operators a†αi and aαi and their bilinear products (3) in respect
to the soL(3) algebra are considered, because the components of the angular
momentum operators that generate it are the main observable in the theory of
nuclear structure. The relation of the ”space” indexes i, j, which take k-values
to the indexes l,m is not straight forward, but it is important to say that the
number of possible values of the projections m of the corresponding l should
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give the value of k. For example in the IBM - 1 [1] model the s–boson with
l = 0,m = 0 and d–boson with l = 2,m = 0,±1,±2 represent the k = 6
case and the construction considered in this work can be applied in its proton-
neutron version (IBM-2) α = ±1/2 for protons and neutrons respectively [3] or
for particles or holes in its particle-hole version [5]. In terms of double tensors
u† lm

tτ and ulm
tτ in respect to the angular momentum l and a t-spin t, the generators

of the sp(4k,R) algebra with k = (2l + 1)) in the general case are [6]:

FLM
TT0

= (GLM
TT0

)† =
1√
2

∑
m1 m2 τ1 τ2

CLM
lm1, lm2

CTT0
tτ1, tτ2

u† lm1
tτ1

u† lm2
tτ2

=
1√
2

(
u† l

t ⊗ u† l
t

)LM

TT0

(4a)

ALM
TT0

=
∑

m1 m2 τ1 τ2

CLM
lm1, lm2

CTT0
tτ1, tτ2

u† lm1
tτ1

ulm2
tτ2

(−1)l−m2(−1)t−τ2

=
(
u† l

t ⊗ ũl
t

)LM

TT0

(4b)

where
ũlm

tτ = (−1)l+m(−1)t+τul−m
t−τ . (5)

The symmetry properties of the Clebsch–Gordan coefficientsCLM
lm, ln andCTτ

tτ1, tτ2

result in some restrictions on the possible values of the angular momentumL and
isospin T of two-boson generators FLM

Tt and GLM
Tt (4a), namely

(−1)2l−L(−1)2t−T = 1 . (6)

The commutation relations between the double tensors (4a) and (4b) are given
in [6] and from them it follows that they define an algebra of the non-compact
symplectic group Sp(4k,R).

The boson representation of the Sp(4k,R) algebra is a reducible one that
decomposes into two irreducible representations. One of them acts in the space
H+, spanned over the vectors for which the number of bosons n is even, and the
other acts in H− defined by the condition n – odd so that H = H+ + H−. By
construction, each of the subspacesH+ and H− spans a reducible representation
of U(2k) which decomposes into a direct sum of eigensubspaces of the first
Casimir invariant N =

∑
a†αiaαi of U(2k). In this way the totally symmetric

irreducible unitary representation (IUR) of U(2k), denoted by [n]2k is realized.
Therefore, the group U(2k) appears as a maximal compact subgroup, which

further contains the direct product U(2) ⊗ U(k) of the two mutually comple-
mentary subgroups generated by the operators Fαβ =

∑
a†αiaβi and Aij =∑

a†αiaαj , respectively. The operator N = Fαα = Aii is the first-order Casimir
operator for the groups U(2) as well as U(k). Because the groups U(2) and
U(k) are mutually complementary and the representations [n]2k are symmet-
ric, all the Casimir operators of SU(k) can be expressed in terms of N and the
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second-order Casimir operator F2 of SU(2),

C
(k)
2 = 2F2 + (k − 2)N +

(k − 2)
2k

N 2. (7)

Next, the IURs of the groups SU(2), SU(k), and SU(2)⊗ SU(k) at n = fixed,
can be labelled by the eigenvalues F (F +1) (F ≡ T ) of the operator F2, where
F = n/2, n/2 − 1, ..., 0 or 1/2 for n even or odd, respectively. Thus when n
is fixed and F is fixed, 2F + 1 equivalent representations of the group SU(k)
arise. Each of them is labelled by the eigenvalues of the operator F0: −F,−F +
1, . . . , F . The above reduction rules follow from the decomposition of the totaly
symmetric U(2k) irreps into the equivalent irreps of the direct product SU(2)⊗
U(k) labelled by two-rowed Young tableaux:

[n]2k =
<n/2>∑

i=0

[n− i, i]k . [n− 2i]2 (8)

Hence, in the framework of the discussed boson representation of the Sp(4k,R)
algebra all possible irreducible representations of the group SU(k) are deter-
mined uniquely through all possible sets of the eigenvalues of the Hermitian
operators N, F2 and F0. On the other hand, the so called ladder representation
of the noncompact groupU(k, k) acts in the space of the boson representation of
the Sp(4k,R) algebra. There exists a connection between this ladder represen-
tation and the boson representation of U(2k), which is realized through the third
generator F0 of the multiplier SU(2) of the already mentioned direct product.
This operator is also the first Casimir operator of the group U(k, k). Different
aspects of this relationship will be revealed in more details in the applications.
As shown in [4], both reduction chains

Sp(4k,R) ⊃ U(2k) ⊃ U(2) ⊗ U(k) ⊃ SU(k) (9)

Sp(4k,R) ⊃ U(k, k) ⊃ U(k) ⊗ U(k) ⊃ SU(k) (10)

are equally convenient for the description of the representations of the final
group SU(k).

3 The Sp(4,R) (k = 1 Case) Classification Scheme

The simplest k = 1 case, illustrates in a very clear way the algebraic construction
that can be used for the classification of the even-even nuclear systems. Similar
methods are used for the classification of elementary particles. The generators of
Sp(4, R) algebra are realized in terms of two types of one-dimensional (scalar)
creation (π†, ν†) and annihilation (π, ν) operators. The reduction of the boson
representation of the classification group Sp(4, R) to its compact u(2) (9) and
non-compact u(1, 1) (9) subalgebras [7],

Nt ↗ u(2) ↘ F0

sp(4, R) uπ(1) ⊕ uν(1),
F0 ↘ u(1, 1) ↗ Nt

(11)
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is the mathematical underpinning of the scheme. As illustrated by (11), the
reduction is realized by means of the operator that counts the total number of
particles, Nt = (Nπ + Nν) (Nπ = π†π,Nν = ν†ν ) which is the first order
invariant of u(2), and the operator of the third projection of the F -spin, F0 =
1
2 (Nπ − Nν), which does not differ essentially from the first order Casimir of
u(1, 1). Nt reduces the space H, in which the boson representation of sp(4, R)
acts, into a direct sum of a totally symmetric irreducible unitary representations
/IUR/ of su(2), labelled by Nt = 0, 2, 4, ... (even H+) or Nt = 1, 2, 3, ... (odd
H−). The operatorF0 reduces the space H to the ladder series of u(1, 1), defined
by its fixed eigenvalues. The same operator F0 reduces each u(2) representation
(fixed value of Nt) to the representations of uπ(1) ⊕ uν(1) labelled by Nπ and
Nν , respectively. The same is obtained by reducing the u(1, 1) ladders with the
operatorNt.

The relation of the algebraic operators used in the classification scheme to
the nuclear characteristics in the valence shell, is quite natural when Nπ =
1
2 (Np − Z(1)) and Nν = 1

2 (Nn − N (1)) are counted as the numbers of pro-
ton and neutron valence pairs of the nucleus from a given shell, in which Z(1)

Table 1. Nuclei from the (50, 82|82, 126)− shell mapped on the H− (Nt-odd) subspace
of Sp(4, R). Each nucleus is defined by the total number of valence bosons N or boson
holes N̄t, which label the rows from the left and from the right side respectively and the
third projections F0 (F̄0) of the F− spin, which label the columns on the top and bottom,
respectively.

F0

N 5/2 3/2 1/2 −1/2 N̄

1 134Te 134Sn 37
3 138Ba 138Xe 138Te 35
5 142Nd 142Ce 142Ba 142Xe 33
7 146Sm 146Nd 146Ce 146Ba 31
9 150Gd 150Sm 150Nd 150Ce 29

11 154Dy 154Gd 154Sm 154Nd 27
13 158Er 158Dy 158Gd 158Sm 25
15 162Yb 162Er 162Dy 162Gd 23
17 166Hf 166Yb 166Er 166Dy 21
19 170W 170Hf 170Yb 170Er 19
21 174Os 174W 174Hf 174Yb 17
23 178Pt 178Os 178W 178Hf 15
25 182Hg 182Pt 182Os 182W 13
27 186Pb 186Hg 186Pt 186Os 11
29 190Pb 190Hg 190Pt 9
31 194Pb 194Hg 7
33 198Pb 5
35 3
37 1

N −11/2 −9/2 −7/2 −5/2 N̄
F̄0
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and N (1) are the numbers of protons and neutrons of the double magic nucleus
at the beginning of the shell. ThenNt and F0 are exactly the operators reducing
the sp(4, R) spaces, and their interpretation corresponds to the one of the Inter-
acting Boson Model - 2 (IBM-2) [8], as the total number of valence bosons and
the third projection of the F -spin. This is illustrated on Table 1 for the even-
even nuclei from the major shell with 50 < Z < 82; 82 < N < 156, labelled
as (50, 82|82, 126)−. This classification of the nuclei from the major nuclear
shells [9] was proven very useful in the empirical investigation of the behavior
of important collective nuclear characteristics, like the energies of the low-lying
states of the even-even nuclei [7] or the semiempirical “collective masses” [10].
In the cases of a smooth behavior of these variables, analytic formulae for their
behavior as functions of the classification quantum numbers were obtained de-
scribing the investigated data for large amount of classified nuclei.

Another good example of the construction and use of the symplectic ex-
tension of the boson models of nuclear structure is the k = 3 case, where the
dynamical symmetry U(6) ⊃ Sp(12, R) of the Interacting Vector Boson Model
(IVBM), that is constructed by means of two types of vector bosons [11]. The
model is applied for the description of the collective modes and their interac-
tions in heavy even-even nuclear systems. This extension yields a rich subgroup
structure of Sp(12, R) within which some new non-compact subgroup structures
appear. The reduction through the direct product Sp(4, R) ⊗ SO(3) [12] is of
particular importance as it is not only used to describe sequences of states with
fixed angular momentum, but also to elucidate the connection of this chain with
the other dynamical symmetries of the model through its SU(2) and SU(1, 1)
subgroups that are also substantial parts of the two other dynamical symmetries
considered. In this way it plays the role of a generalized group classification
scheme, one that orders (distributes) the collective excitations in spectra of in-
dividual nuclei in terms of the collective (boson) structure of their band-head
configurations.

4 The Symplectic Extension of the Interacting Boson Model – 2

The version of the model, denoted as IBM-2, that considers the proton and
neutron nuclear subsystems has dynamical symmetry represented by the direct
product of the two algebras Uπ(6) ⊗ Uν(6), which is obviously contained in
U(12) [13]. Based on the the general reduction of the Sp(4k,R) [4] algebra
given in (9) and (10) it is straightforward to realize the symplectic extension of
the group of dynamical symmetry of the model U(12) ⊃ Sp(24, R) [9], as the
k = 6 case. Further making use of the simple classification properties of the
Sp(4, R) group, outlined in Section 3, and the interpretation of the reduction
operators in terms of the IBM-2 [8], we explore an other possible reduction [14]
of Sp(4k,R) algebra – through its noncompact subalgebra sp(4, R)

Sp(4k,R) ⊃ Sp(4, R) ⊗ SO(k). (12)
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In the considered case, we make use of the following correspondence between
the two chains (trough u(12) (9) and sp(4, R) (12)) of subalgebras of sp(24, R):

sp(24, R) ⊃ sp(4, R) ⊗ so(6)
∪ ∪ ∩
u(12) ⊃ u(2) ⊗ su(6),

(13)

which plays an important role [15]. Result (13) is a consequence of the equiva-
lence of the u(2) ⊃ sp(4, R) algebra of F− spin, distinguishing the proton and
neutron valence particles in IBM-2 [8] and which is complementary to the su(6)
in the reduction u(2) ⊗ su(6) ⊂ u(12).

Using the general reduction scheme given by the chains (9) and (10) in con-
junction with the reduction (12) and the correspondence (13) we obtain the sym-
plectic extension of the IBM-2:

↗ Up(6) ⊗ Un(6) ↘
U(12) −→ U(2) ⊗ Up+n(6)
↑ ↑ ↓

Sp(24, R) −→ Sp(4, R)⊗ O(6)
↓ ↓ ↑

U(6, 6) −→ U(1, 1) ⊗ U∗
p−n(6)

↘ Up(6) ⊗ U∗
n(6) ↗

(14)

The formal algebraic aspects of this construction are in a close analogy with the
symplectic extension of the k = 3 case of the Interacting Vector Boson Model
and details on it can be found in [11]. From the u(6) algebra down to the algebra
of the angular momentum one can proceed with the reductions defining the three
limiting cases of IBM-1 [1] through the U(5), U(3) and O(6) (1), which have
the anharmonic vibrator, the axial rotor and the γ-unstable rotor as geometrical
analogs. Actually the O(6) multiplier of the algebra of Sp(4, R) on the second
row of (14) is exactly the one that will start the respective limit of the model. It
was shown in [16] that using an infinite dimensional algebraic technique based
on the relationship of the quantum numbers of representations and the second
order Casimir invariants of the bases U(5) ⊃ SO(5) and SO(6) ⊃ SO(5) with
the SUd(1, 1) ⊃ U(1) and the SUsd(1, 1) ⊃ U(1) respectively, exact analytic
solutions can be obtained for the O(6) ↔ U(5) transitional cases.

In this reduction scheme (14) we have, as for the k = 3 case of the IVBM,
the vertical structure in the reduction of Sp(4, R) (11), but in this case related
to the classification of all the even-even nuclei from a given major nuclear shell.
This follows from the physical interpretation of the reduction operators as the
operators of the total number of valence bosons (proton and neutron pairs) –
N = (Nπ + Nν), the valence isospin – F = N

2 , . . . , |Nπ−Nν

2 | and its third
projection F0 = 1

2 (Nπ−Nν). This construction involving a classification group
in a larger dynamical group allows us to treat in a unified way the properties of
sequences of nuclei. Furthermore, a way that is similar to the considerations
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in [16], it allows us to obtain analytic solutions for the energy spectrum and the
transition operators of sequences of nuclei defined by the classification quantum
numbers.

In this regard we are motivated by the empirical investigation of the experi-
mental energies of the ground state bands of all even-even nuclei with A > 20,
[7], based on the Sp(4, R)-classification scheme [9]. This reveals a smooth
and periodic behavior of the energies as classified in fixed F0 multiplets for
changing values of Nt. In a more consistent application of the reduction scheme
(14), the interactions can be prescribed by the respective dynamical symmetry,
as suggested in [7], which yields a generalized phenomenological description by
means of the Hamiltonian:

H = a6C2[O(6)] + a5C2[O(5)] + b3(N)C2[O(3)], (15)

where the inertial parameter b3 is evaluated as a function of the classification
quantum number b3(Nt) = b3/(aNt + bN2

t ), when we consider nuclei in a F−
spin multiplet (F0−fixed). We illustrate this approach in Figure 1 for ground
state bands’(gsb) energies of the sequence of nuclei from the F0 = 5

2 column of
the shell (50, 82|82, 126) given on Table 1. The mixed symmetric (two-rowed)

Figure 1. Comparison between the experimental(lines) and theoretical (stars) values
of the gsb energies of the sequence of nuclei from the F0 = 5

2
column of the shell

(50, 82|82, 126)−.

states (if considered) are pushed up by the first term. In the fitting procedure the
experimental energies up to L=10 of the considered nuclei are compared with
the theoretical predictions for the basis states that belong to the fully symmetric
irrep of O(6). This is a standard choice, since when a6 > 0, this irrep gives the
lowest energy values of the states. The non-symmetric (mixed symmetry) irreps
will be pushed up in energy and can be used eventually for the description of

170



Symplectic Extensions of IBM - 2

other low-lying excited bands. An alternative parametrization, where b3(Nt) =
(1+aNt+bN2

t ) gives equivalent results (the same χ2) , and in theN → ∞ limit
this term does not disappear. The obtained results are quite good in particular
for the low-lying states, keeping in mind the quite big amount of reproduced
experimental data.

5 Conclusions

Based on general reduction schemes for boson representations of symplectic
algebras of the type Sp(4k,R) [4], we first present applications of the simplest
k = 1 case. Specifically, we showed that the Sp(4, R) algebra is very convenient
for classifying many-body nuclear systems within a major nuclear shell when
we use an interpretation of the reduction operators in terms of IBM-2 bosons
( [13]), representing pairs of valence protons and neutrons, the constituent par-
ticles of any nuclei. This interpretation was advanced for a generalized descrip-
tion [7], [9] of nuclear properties based on the quantum labels of the associated
classification scheme.

We presented a generalized reduction scheme for the symplectic extension
(k = 6) of the proton-neutron version of the IBM-2 [13]. A point of inter-
est in this case is that the k = 1 results reappear with the same interpretation
of the Sp(4, R) structure and reductions as discussed in [9]. This limit of the
theory provides us with an opportunity to describe, within the framework of
the Sp(24, R) dynamical symmetry, the development of collectivity across an
entire nuclear shell, allowing for an investigation of transitions between the dif-
ferent limiting cases, while at the same time retaining the strategic advantage
of dynamical symmetries for obtaining exact analytic solutions. This approach
can also provide for an algebraic evaluation of critical point features, such as
phase/shape transitions, in terms of the nuclear characteristics employed in their
classification.

In summary, we explored the richer possibilities that the symplectic exten-
sions of unitary algebras provide, and made use of their classification properties
in order to achieve generalized descriptions of the nuclear collective behavior.
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