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Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe,
B-1050 Brussels, Belgium

Abstract. It is shown how a SUSYQM β vibration, which describes the axial
deformation of atomic nuclei, leads to a Deformation Dependent Mass behavior
for the Davidson potential. Tables which compare theoretical predictions with
experimental data are presented for the axially symmetric prolate behavior.

1 Introduction

The Deformation Dependent Mass Davidson Model is an extension of the well
known Bohr-Mottelson Hamiltonian [1] for the atomic nuclei. It primarily refers
to the mass dependence on the deformation and secondary to the Davidson be-
havior for the potential of the β-vibration.

The resulting Hamiltonian is solved using techniques of SUSYQM as dic-
tated by [2]. Such a technique is the integrability condition which is called Shape
Invariance. A Schroedinger equation is exactly solvable if and only if the poten-
tial term is Shape Invariant [3]. The Davidson potential is known for its shape
invariant behavior [4]. In the case of a deformation dependent mass in the Bohr
Hamiltonian [5], an effective potential is also present. Shape invariance states
that its behavior should be that of the Davidson potential. This is the way to
determine the functional dependence of mass on the deformation as discussed
in [6].

This article will be devoted solely in the solution of the radial equation for
the β vibrations. The radial equation has a common form for the γ unstable and
axially symmetric prolate nuclei and the treatment in each case can be found
in [7]. Numerical predictions for the spectra are shown for axially symmetric
prolate nuclei. Finally a complete comparison for the ground state, β1 and γ1

bands of 162Dy and 238U is presented.
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2 SUSYQM for the β Vibrations

Quesne and Tkachuk begun to study SUSYQM methods for non-pointlike quan-
tum oscillators [8,9], that is harmonic oscillators with non-pointlike excitations.
In principle, in such an oscillator the Heisenberg uncertainty relations are mod-
ified and this guides the modification of the canonical commutation relations.
In [2] the equivalence of such an oscillator with a Schroedinger equation of a po-
sition dependent mass problem was established. In [5] a Schroedinger equation
of the Bohr-Mottelson type was presented for the case of a mass dependent on
the β degree of freedom. Therefore, based on the Quesne and Tkachuk equiva-
lence we construct the phase space of the β degree of freedom with commutation
relations,

[β, pβ ] = i�f(β). (1)

The function f(β) is called the deformation function. Because of its pres-
ence, in the second quantization procedure, the ladder operators will not be as
usual but modified in generally as,

A± → A±(a, μ, ν) = ∓
√
f(a;β)

d

dβ

√
f(a;β) +W (μ, ν;β). (2)

Here a deformed momentum operator is introduced through the deformation
function f(a;β) and the superpotentialW (μ, ν;β), which signals the SUSYQM
method. From the parameters (a, μ, ν), only a will remain free. The Hamilto-
nian corresponding to these ladder operators will of course give good quantum
numbers for the stationary states of β-vibrations, characterized by a function
R(β).

The principal SUSYQM demand states that the action of the Hamiltonian op-
erator to the ground state shall give zero. The parameter ε0 is introduced, which
is assumed to be the energy of the ground state, and therefore the SUSYQM
method is valid for the Hamiltonian,

A+(a, μ, ν)A−(a, μ, ν) = H − ε0, (3)

which gives zero eigenvalue for the vacuum. This Hamiltonian shall correspond
to the radial equation which is [7],

HR = −
(√

f
d

dβ

√
f

)2

R+ 2uR = 2εR. (4)

This correspondence emerges the equation,

W 2(μ, ν;β) − f(β)W ′(μ, ν;β) + ε0 = 2u(β). (5)

Now, the main result of [2] is that the Schroedinger equation (4) is also
obtained for the case of a position dependent mass problem, as discussed in
[5, 10] with a change in the potential,

u→ ueff = u+
1
4
ff ′′ +

1
6
(f ′)2. (6)
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Therefore the energy of the ground state ε0 can be determined from the ueff .
This can be done if the specific potential ueff (β) has known superpotential and
deformation function.

2.1 Shape Invariance and the Davidson Potential

Schroedinger equation is known to be exactly solvable for the Davidson potential
[11]. Shape invariance states that a potential gives exact solutions if and only if
retains the same functional dependence under the change of its parameters. In
the figure below, shape invariance is shown for the Davidson’s parameter β0

which is fitted to a specific nucleus, namely the minimum reflects the ground
state of the β vibrations.
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Figure 1. The Davidson Potential V (β) = β2 +
β4

0

β2
and its shape invariant behavior

under a parameter shift.

We extend the shape invariance condition for the effective potential. This
means that ueff should retain the Davidson behavior for every change in the
parameters, with

W 2(μ, ν;β) − f(β)W ′(μ, ν;β) + ε0 = 2ueff(β) = k1β
2 + k0 +

k−1

β2
. (7)

In [4], classes of shape invariant potentials have been studied with the iden-
tification of their corresponding superpotentials and deformation functions. The
superpotential and deformation function for the Davidson case are,

W (β) =
μ

β
+ νβ , f(β) = 1 + aβ2. (8)
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3 Energy spectrum

From [5] the coefficients of the effective potential are,

k1 = 2 + a2(12 + Λ), k0 = a(13 + 2Λ), k−1 = 2 + Λ + 2β4
0 , (9)

with Λ = τ(τ + 3) for γ unstable and Λ = L(L+1)−K2

3 + (6c)(nγ + 1) for the
axially symmetric behavior. The parameter c controls γ stiffness and nγ is the
quantum number for γ vibrations.

3.1 Ground state band

With these equations the energy of the ground state is determined from the ex-
pressions,

μ(μ+ 1) = k−1, ν(ν − a) = k1, 2μν + μa− ν + ε0 = k0, (10)

μ = −1
2

(
1+
√

9+Λ+8β4
0

)
, ν =

a

2

(
1+

√
1+

8+4a2(12+Λ)
a2

)
. (11)

From these equations the energy of the ground state ε0 is found to be

ε0 =
19
4
a+

5
2
a+

1
2

√
a2 + 4k1

+
a

2

√
1 + 4k−1 +

1
4

√
(a2 + 4k1)(1 + 4k−1) + aΛ. (12)

Actually this is the energy of the ground state band for the β vibration, because
of the Λ dependence in each case.

3.2 β Bands

In SUSYQM the operatorsA+(a, μ, ν)A−(a, μ, ν) andA−(a, μ, ν)A+(a, μ, ν)
generate two isospectral Hamiltonians. For the determination of the excited
states the extension is not restricted to a pair but to a hierarchy of Hamiltoni-
ans

Hi = A+
i A

−
i +

i∑
j=0

εj, i = 0, 1, 2, . . . , (13)

The shape invariance condition [3] here gives the equation

A−
i A

+
i = A+

i+1A
−
i+1 + εi+1, (14)

which means that every excited state of the Hamiltonian under solution is isospec-
tral with the ground state of the j-th member of the hierarchy. Therefore in order
to obtain the energy of an arbitrary n-th excited state, the hierarchy must be ter-
minated to a certain member and we call this member the n-th, which is therefore
the first quantum number.
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Table 1. Comparison of theoretical predictions of the DDM Davidson to experimental
data [12] of axially symmetric prolate deformed rare earth and actinide nuclei with R4/2

> 2.9 and known 0+
2 and 2+

γ states. The R4/2 = E(4+
1 )/E(2+

1 ) ratios, as well as the
β and γ bandheads, normalized to the 2+

1 state and labelled by R0/2 = E(0+
β )/E(2+

1 )

and R2/2 = E(2+
γ )/E(2+

1 ) respectively, are shown. β0, a, and c are free parameters,
related to the Davidson potential, to the dependence of the mass on the deformation, and
to the γ-stiffness. Eq. (21) defines the quality measure σ, while the angular momenta of
the highest levels of the ground state, β and γ bands included in the rms fit and the total
number of levels involved in the fit, for each nucleus can be found in Ref. [7].

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 c a σ
exp th exp th exp th

150Nd 2.93 3.13 5.2 7.9 8.2 5.8 0.0 2.1 0.003 2.012
152Sm 3.01 3.14 5.6 8.4 8.9 6.5 0.0 2.4 0.000 3.327
154Sm 3.25 3.27 13.4 13.0 17.6 18.6 1.30 6.9 0.021 0.515
154Gd 3.02 3.09 5.5 6.5 8.1 4.1 0.0 1.4 0.024 3.546
156Gd 3.24 3.25 11.8 10.8 13.0 14.3 0.0 5.3 0.026 0.933
158Gd 3.29 3.29 15.0 14.5 14.9 15.1 1.99 5.3 0.025 0.323
160Gd 3.30 3.30 17.6 17.3 13.1 13.2 2.38 4.5 0.020 0.125
162Gd 3.29 3.30 19.8 19.8 12.0 12.1 2.52 4.1 0.008 0.078
156Dy 2.93 3.13 4.9 7.4 6.5 5.3 0.0 1.9 0.014 1.789
158Dy 3.21 3.22 10.0 9.6 9.6 10.3 0.26 3.8 0.023 0.496
160Dy 3.27 3.27 14.7 14.7 11.1 12.1 1.92 4.3 0.005 0.510
162Dy 3.29 3.30 17.3 15.7 11.0 11.2 2.23 3.8 0.020 0.742
164Dy 3.30 3.30 22.6 22.5 10.4 10.2 2.68 3.4 0.000 0.100
166Dy 3.31 3.31 15.0 14.9 11.2 11.2 2.39 3.7 0.047 0.077
160Er 3.10 3.16 7.1 8.1 6.8 6.6 0.00 2.4 0.013 0.699
162Er 3.23 3.23 10.7 10.7 8.8 10.1 1.29 3.7 0.013 0.770
164Er 3.28 3.27 13.6 12.2 9.4 9.6 1.83 3.3 0.026 0.918
166Er 3.29 3.28 18.1 16.8 9.8 9.9 2.22 3.4 0.002 0.698
168Er 3.31 3.31 15.3 14.4 10.3 10.2 2.29 3.4 0.041 0.404
170Er 3.31 3.30 11.3 10.1 11.9 12.9 1.64 4.4 0.083 0.837
162Yb 2.92 3.07 3.6 6.8 4.8 4.0 0.00 1.4 0.003 1.036
164Yb 3.13 3.18 7.9 8.3 7.0 7.4 0.00 2.7 0.023 0.357
166Yb 3.23 3.23 10.2 8.9 9.1 9.7 0.66 3.5 0.038 0.973
168Yb 3.27 3.26 13.2 11.2 11.2 11.5 1.52 4.1 0.028 1.070
170Yb 3.29 3.27 12.7 11.2 13.6 14.1 1.36 5.1 0.035 0.963
172Yb 3.31 3.30 13.2 12.2 18.6 18.9 1.66 6.6 0.055 0.742
174Yb 3.31 3.31 19.4 19.3 21.4 21.5 2.44 7.5 0.019 0.104
176Yb 3.31 3.30 13.9 13.7 15.4 15.5 1.97 5.4 0.036 0.287
178Yb 3.31 3.27 15.7 15.5 14.5 14.6 1.88 5.3 0.000 0.127
166Hf 2.97 3.08 4.4 6.9 5.1 4.3 0.00 1.5 0.006 0.873
168Hf 3.11 3.17 7.6 8.1 7.1 6.9 0.00 2.5 0.023 0.494
170Hf 3.19 3.21 8.7 8.7 9.5 8.8 0.00 3.2 0.033 0.970
172Hf 3.25 3.24 9.2 9.8 11.3 11.7 0.00 4.3 0.031 0.549
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Table 1. (continued)

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 c a σ
exp th exp th exp th

174Hf 3.27 3.25 9.1 10.4 13.5 13.6 0.00 5.0 0.033 0.832
176Hf 3.28 3.28 13.0 11.5 15.2 16.1 1.31 5.8 0.038 0.950
178Hf 3.29 3.28 12.9 12.3 12.6 13.0 1.70 4.6 0.028 0.356
180Hf 3.31 3.30 11.8 11.5 12.9 13.0 1.92 4.4 0.068 0.157
176W 3.22 3.21 7.8 9.1 9.6 9.5 0.00 3.5 0.027 0.881
178W 3.24 3.22 9.4 8.6 10.5 8.9 0.00 3.2 0.039 0.987
180W 3.26 3.25 14.6 13.1 10.8 11.5 1.64 4.2 0.000 0.603
182W 3.29 3.29 11.3 11.5 12.2 12.5 1.77 4.3 0.050 0.195
184W 3.27 3.28 9.0 8.9 8.1 8.0 1.57 2.7 0.080 0.093
186W 3.23 3.25 7.2 7.2 6.0 6.3 1.20 2.1 0.099 0.130
176Os 2.93 3.10 4.5 6.9 6.4 4.6 0.00 1.6 0.016 1.747
178Os 3.02 3.12 4.9 7.2 6.6 5.1 0.00 1.8 0.017 1.836
180Os 3.09 3.22 5.6 7.1 6.6 6.9 0.00 2.4 0.078 1.021
184Os 3.20 3.21 8.7 9.9 7.9 8.5 1.21 3.1 0.011 0.886
186Os 3.17 3.19 7.7 7.0 5.6 6.0 0.00 2.1 0.063 0.702
188Os 3.08 3.15 7.0 7.2 4.1 4.4 1.07 1.5 0.033 0.170
190Os 2.93 3.07 4.9 5.6 3.0 3.1 0.00 1.0 0.051 0.419
228Ra 3.21 3.24 11.3 11.0 13.3 13.3 0.57 5.0 0.016 0.177
228Th 3.24 3.26 14.4 14.3 16.8 17.0 1.50 6.4 0.002 0.214
230Th 3.27 3.27 11.9 11.6 14.7 14.7 1.44 5.3 0.034 0.243
232Th 3.28 3.28 14.8 14.0 15.9 16.5 1.80 5.9 0.022 0.426
232U 3.29 3.29 14.5 13.8 18.2 18.4 1.74 6.6 0.028 0.394
234U 3.30 3.30 18.6 18.3 21.3 21.8 2.19 7.8 0.011 0.244
236U 3.30 3.30 20.3 20.0 21.2 21.2 2.38 7.5 0.009 0.143
238U 3.30 3.31 20.6 20.6 23.6 24.7 2.38 8.8 0.009 0.665
238Pu 3.31 3.31 21.4 21.4 23.3 23.3 2.61 8.1 0.016 0.067
240Pu 3.31 3.31 20.1 19.9 26.6 26.6 2.40 9.4 0.018 0.117
242Pu 3.31 3.31 21.5 21.4 24.7 24.7 2.52 8.7 0.012 0.107
248Cm 3.31 3.31 25.0 24.8 24.2 24.3 2.72 8.5 0.004 0.159
250Cf 3.32 3.31 27.0 26.9 24.2 24.2 2.88 8.4 0.003 0.053

In terms of the superpotential and the deformation function, the shape invari-
ance condition gives,

W 2(μi, νi;β) + f(β)W ′(μi, νi;β)

= W 2(μi+1, νi+1;β) − f(β)W ′(μi+1, νi+1;β) + εi+1, (15)

where i = 0, 1, 2, . . ., μ0 = μ, ν0 = ν, and is equivalent to

(μi

β
+ νiβ

)2

+ (1 + aβ2)
(
− μi

β2
+ νi

)
=
(μi+1

β
+ νi+1β

)2

− (1 + aβ2)
(
− μi+1

β2
+ νi+1

)
+ εi+1. (16)
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We obtain,

μi(μi − 1) = μi+1(μi+1 + 1),
νi(νi + a) = νi+1(νi+1 − a),
2μiνi − μia+ νi = 2μi+1νi+1 + μi+1a− νi+1 + εi+1.

(17)

Their solutions are
μi = μ− i, νi = ν + ia, (18)

and
εi+1 = 2(μiνi − μi+1νi+1) − (μi + μi+1)a+ νi + νi+1. (19)

From these relations and the termination to the n-th member the energy spectrum
of the model is determined as,

εn = 1
2

n∑
i=0

εi = 1
2 [k0 + 1

2a(3 + 2Δ1 + 2Δ2 + Δ1Δ2)

+ 2a(2 + Δ1 + Δ2)n+ 4an2], n = 0, 1, 2, . . . ,

(20)

with Δ1 ≡ √
1 + 4k−1, Δ2 ≡

√
1 + 4k1

a2 . The ground state band is ob-
tained from n = 0, while the quasi-β1 band is obtained from n = 1, and the
quasi-β2 band is obtained from n = 2.

4 Fitting

In [7] the above energy spectrum was fitted for the cases of γ-unstable and de-
formed axially symmetric nuclei. The fitting measure was the Gaussian error,

σ =

√∑n
i=1(Ei(exp) − Ei(th))2

(n− 1)E(2+
1 )2

. (21)

In the case of deformed axially symmetric nuclei, three free parameters re-
main for the comparison to the experimental data. These are β0, which is fitted to
a specific nucleus and shows the deformation of its ground state, a, which shows
the DDM magnitude in this nucleus, and c, which controls the γ-vibrations for
the axially prolate case. Some results are shown in two tables.

In the first table the agreement for the spectra is very good in most cases.
Disagreement is observed in those nuclei which are close to the X(5) limit, such
as 150Nd, 152Sm, 154Gd, 156Dy. This behavior is expected, because a flat poten-
tial is appropriate for the X(5) limit, not the Davidson one.

In the second table the ground state, β1 and γ1 bands in the cases of 238U
and 162Dy are compared to experimental data [12]. Both the bandheads and the
spacings within bands are in general well reproduced. This is particularly true
for the ground state and the γ1 bands. The deviation in the gsb of 162Dy reaches
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Table 2. Normalized [to the energy of the first excited state, E(2+
1 )] energy levels of the

ground state band (gsb) and the β1 and γ1 bands of 162Dy and 238U, obtained from the
Bohr Hamiltonian with β-dependent mass for axially symmetric prolate deformed nuclei
using the parameters given in Table 1, compared to available experimental data [12].

162Dy 162Dy 238U 238U 162Dy 162Dy 238U 238U
L exp th exp th L exp th exp th

gsb gsb gsb gsb γ1 γ1 γ1 γ1

0 0.00 0.00 0.00 0.00 2 11.0 11.2 23.6 24.7
2 1.00 1.00 1.00 1.00 3 11.9 12.1 24.6 25.5
4 3.29 3.30 3.30 3.31 4 13.2 13.3 25.9 26.7
6 6.80 6.80 6.84 6.86 5 14.7 14.7 27.4 28.1
8 11.41 11.41 11.54 11.57 6 16.4 16.5 29.2 29.8

10 17.04 17.01 17.27 17.33 7 18.5 18.5 31.2 31.7
12 23.57 23.49 23.97 24.06 8 20.7 20.8 33.5 33.9
14 30.90 30.74 31.51 31.63 9 23.3 23.3 36.0 36.3
16 38.90 38.70 39.82 39.97 10 25.9 26.0 38.8 39.0
18 47.58 47.28 48.78 48.98 11 29.0 28.9 41.7 41.9
20 58.31 58.61 12 31.4 32.1 44.9 45.0
22 68.31 68.77 13 35.5 35.5 48.3 48.3
24 78.71 79.44 14 39.4 39.9 51.9 51.8
26 89.46 90.55 15 55.7 55.5
28 100.57 102.08 16 59.7 59.4
30 112.10 113.99 17 63.9 63.4

18 68.2 67.7
β1 β1 β1 β1 19 72.7 72.0

0 17.3 15.7 20.6 20.6 20 77.3 76.6
2 18.0 16.7 21.5 21.6 21 82.1 81.3
4 19.5 19.0 23.5 24.0 22 87.0 86.1
6 21.9 22.6 23 91.9 91.0
8 24.6 27.4 24 97.0 96.1

25 102.1 101.3
26 107.4 106.6
27 112.7 112.0

0.6% at L = 18, while in the gsb of 238U it reaches 1.7% at L = 30. The
experimental levels of the γ1 band of 162Dy (up to L = 14) extend over 28.4
energy units, while the corresponding theoretical predictions spread over 28.7
units, the difference being of the order of 1%. Similarly in 238U the experimental
spread of the γ1 band (up to L = 27) is 89.1 energy units, while the theoretical
one is 87.3 units, the difference being of the order of 2%.

On the other hand, the theoretical level spacings within the β1 bands are
larger than the experimental ones. It is worth mentioning that results for B(E2)
transition rates in the two cases [7], reveal a similar behavior. B(E2)’s are in
overall good agreement with the experimental data, apart from the β1 → gsb
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transitions. The theoretical predictions are overestimating these transitions.
This behavior along with the β1 bands could be seen as an effect of the

Davidson potential. It rises too fast in its right part as seen in Figure 1, thus
producing a large gap between the ground state and the β1 bands and in ad-
dition increasing their interlevel spacing. However, as it has been pointed out
in [13], the form of the quadrupole operator should be tested by changing the
mass coefficients of the Bohr Hamiltonian.

5 Conclusion

The motivation to adopt a DDM framework in the Bohr Hamiltonian is described
in [6]. A treatment of the β vibrations through SUSYQM techniques results im-
mediately in a DDM behavior. The application of the Davidson potential in the
resulting Schroedinger equation yields an overall good agreement for the axially
symmetric prolate nuclei, apart from X(5) candidates. An encouraging fact for
the model is the agreement to the data for large values of angular momenta in
the ground state and γ1 bands for the cases of 238U and 162Dy. However, the
behavior of β1 bands does not share this success.
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