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Abstract. It is shown how a SUSYQM § vibration, which describes the axial
deformation of atomic nuclei, leads to a Deformation Dependent Mass behavior
for the Davidson potential. Tables which compare theoretical predictions with
experimental data are presented for the axially symmetric prolate behavior.

1 Introduction

The Deformation Dependent Mass Davidson Model is an extension of the well
known Bohr-Mottelson Hamiltonian [1] for the atomic nuclei. It primarily refers
to the mass dependence on the deformation and secondary to the Davidson be-
havior for the potential of the 3-vibration.

The resulting Hamiltonian is solved using techniques of SUSYQM as dic-
tated by [2]. Such a technique is the integrability condition which is called Shape
Invariance. A Schroedinger equation is exactly solvable if and only if the poten-
tial term is Shape Invariant [3]. The Davidson potential is known for its shape
invariant behavior [4]. In the case of a deformation dependent mass in the Bohr
Hamiltonian [5], an effective potential is also present. Shape invariance states
that its behavior should be that of the Davidson potential. This is the way to
determine the functional dependence of mass on the deformation as discussed
in [6].

This article will be devoted solely in the solution of the radial equation for
the 3 vibrations. The radial equation has a common form for the -y unstable and
axially symmetric prolate nuclei and the treatment in each case can be found
in [7]. Numerical predictions for the spectra are shown for axially symmetric
prolate nuclei. Finally a complete comparison for the ground state, 31 and 1
bands of 162Dy and 238U is presented.
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2 SUSYQM for the 3 Vibrations

Quesne and Tkachuk begun to study SUSYQM methods for non-pointlike quan-
tum oscillators [8,9], that is harmonic oscillators with non-pointlike excitations.
In principle, in such an oscillator the Heisenberg uncertainty relations are mod-
ified and this guides the modification of the canonical commutation relations.
In [2] the equivalence of such an oscillator with a Schroedinger equation of a po-
sition dependent mass problem was established. In [5] a Schroedinger equation
of the Bohr-Mottelson type was presented for the case of a mass dependent on
the 3 degree of freedom. Therefore, based on the Quesne and Tkachuk equiva-
lence we construct the phase space of the 3 degree of freedom with commutation
relations,

(8, psl = ihf(B). (1

The function f(0) is called the deformation function. Because of its pres-

ence, in the second quantization procedure, the ladder operators will not be as
usual but modified in generally as,

AF — A% (a,p,v) = T/ f (a3 ¢f B)+W(p,viB). (2

Here a deformed momentum operator is introduced through the deformation
function f(a; 3) and the superpotential W (u, v; 3), which signals the SUSYQM
method. From the parameters (a, i, v), only a will remain free. The Hamilto-
nian corresponding to these ladder operators will of course give good quantum
numbers for the stationary states of (3-vibrations, characterized by a function
R(3).

The principal SUSYQM demand states that the action of the Hamiltonian op-
erator to the ground state shall give zero. The parameter € is introduced, which
is assumed to be the energy of the ground state, and therefore the SUSYQM
method is valid for the Hamiltonian,

At (a, p,v) A (a, p,v) = H — &, 3)

which gives zero eigenvalue for the vacuum. This Hamiltonian shall correspond
to the radial equation which is [7],

(\f f) R+ 2uR = 2¢R. )
This correspondence emerges the equation,

W2(,v; 8) = F(BYW (1, v B) + €0 = 2u(3). Q)

Now, the main result of [2] is that the Schroedinger equation (4) is also
obtained for the case of a position dependent mass problem, as discussed in
[5,10] with a change in the potential,

1
" + —(f/)Q- (6)

1
u—>ueff:’u+1ff 6
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Therefore the energy of the ground state €y can be determined from the .y .
This can be done if the specific potential u. s (3) has known superpotential and
deformation function.

2.1 Shape Invariance and the Davidson Potential

Schroedinger equation is known to be exactly solvable for the Davidson potential
[11]. Shape invariance states that a potential gives exact solutions if and only if
retains the same functional dependence under the change of its parameters. In
the figure below, shape invariance is shown for the Davidson’s parameter 3y
which is fitted to a specific nucleus, namely the minimum reflects the ground
state of the (3 vibrations.

V()

4
Figure 1. The Davidson Potential V(8) = % + % and its shape invariant behavior

under a parameter shift.

We extend the shape invariance condition for the effective potential. This
means that u.ys should retain the Davidson behavior for every change in the
parameters, with

k_
W2(u, 5 8) = F(BYW! (11, v; B) + €0 = 2ucss(B) = k15> + ko + 5—21 @)
In [4], classes of shape invariant potentials have been studied with the iden-
tification of their corresponding superpotentials and deformation functions. The
superpotential and deformation function for the Davidson case are,

W(ﬂ):%w . f(B) =1+ap @)
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3 Energy spectrum
From [5] the coefficients of the effective potential are,

k1 =2+a*(12+A),  ko=a(13+2A), k_;=2+A+255, (9)
with A = 7(7 + 3) for 7y unstable and A = M + (6¢)(ny + 1) for the
axially symmetric behavior. The parameter c controls «y stiffness and n., is the
quantum number for ~ vibrations.

3.1 Ground state band

With these equations the energy of the ground state is determined from the ex-
pressions,

plp+1)=k_1, viv—a)=k, 2uv—+pa—v+eo=ko, (10)

1 " _a 8+4a2(124A)
p=-3 (1+,/9+A+850> , v=3 <1+\/1+T . (D

From these equations the energy of the ground state ¢ is found to be

19 5 1
= — — — 2 4
€0 4a+2a+2 a® + 4k,

1
+ %\/1 + ko1 + V(@2 + 4k)(1+ 4k1) +ah. (12)

Actually this is the energy of the ground state band for the [ vibration, because
of the A dependence in each case.

3.2 [ Bands

In SUSYQM the operators A (a, 1, v) A~ (a, p,v) and A~ (a, u, v) AT (a, p, v)
generate two isospectral Hamiltonians. For the determination of the excited
states the extension is not restricted to a pair but to a hierarchy of Hamiltoni-
ans

Hy=AfA7 +) g, i=01,2,..., (13)
j=0

The shape invariance condition [3] here gives the equation

ATAT = AL A F i, (14)
which means that every excited state of the Hamiltonian under solution is isospec-
tral with the ground state of the j-th member of the hierarchy. Therefore in order
to obtain the energy of an arbitrary n-th excited state, the hierarchy must be ter-
minated to a certain member and we call this member the n-th, which is therefore
the first quantum number.
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Table 1. Comparison of theoretical predictions of the DDM Davidson to experimental
data [12] of axially symmetric prolate deformed rare earth and actinide nuclei with Ry /o
> 2.9 and known 03 and 2 states. The Ry/» = E(47)/E(27) ratios, as well as the
f3 and  bandheads, normalized to the 2 state and labelled by Ry/» = E (0?3') JE(21)
and Ry /o = E(2%)/E(27) respectively, are shown. S, a, and c are free parameters,
related to the Davidson potential, to the dependence of the mass on the deformation, and
to the ~v-stiffness. Eq. (21) defines the quality measure o, while the angular momenta of
the highest levels of the ground state, 5 and v bands included in the rms fit and the total
number of levels involved in the fit, for each nucleus can be found in Ref. [7].

Nucleus R4/2 R4/2 RO/2 RO/2 R2/2 Rg/g ﬁo C a g
exp th exp th exp th

150Ng 293  3.13 5.2 7.9 8.2 58 0.0 2.1 0.003 2012
1529m 3.01 3.14 5.6 8.4 8.9 65 0.0 24 0.000 3.327
1549m 325 327 134 130 176 186 130 6.9 0.021 0.515
154Gq 3.02  3.09 5.5 6.5 8.1 41 00 14 0.024 3.546
156 Gd 324 325 11.8 108 13.0 143 0.0 53 0.026 0933
158Gq 329 329 150 145 149 151 199 53 0.025 0323
160Gq 330 330 17.6 173 131 132 238 45 0.020 0.125
162G4q 329 330 198 198 120 121 252 4.1 0.008 0.078
156Dy 293  3.13 49 74 65 53 0.0 19 0.014 1.789
158Dy 321 322 100 9.6 9.6 103 026 3.8 0.023 0.496
160py 327 327 147 147 11.1 121 192 43 0.005 0.510
162py 329 330 173 157 110 112 223 3.8 0.020 0.742
164py 330 330 22,6 225 104 102 2.68 3.4 0.000 0.100
166py 331 331 150 149 112 112 239 3.7 0.047 0.077
160F; 3.10 316 7.1 8.1 6.8 6.6 000 24 0.013 0.699
162g, 323 323 107 107 8.8 101 129 3.7 0.013 0.770
164y 328 327 136 122 94 96 1.83 33 0.02 0918
166 329 328 181 168 9.8 99 222 34 0.002 0.698
168, 331 331 153 144 103 102 229 34 0.041 0.404
10y 331 330 113 101 119 129 1.64 44 0.083 0.837
162y 292 3.07 36 68 48 40 0.00 14 0003 1.036
164y 3.13  3.18 7.9 8.3 7.0 74 0.00 27 0.023 0357
166y 323 323 102 8.9 9.1 9.7 066 3.5 0.038 0.973
168y 327 326 132 112 112 115 152 41 0.028 1.070
170yh 329 327 127 112 136 141 136 51 0.035 0.963
172yp 331 330 132 122 186 189 1.66 6.6 0.055 0.742
1T4yh 331 331 194 193 214 215 244 75 0.019 0.104
176yh 331 330 139 137 154 155 197 54 0.036 0.287
178yp 331 327 157 155 145 146 1.88 53 0.000 0.127
166y 297  3.08 4.4 6.9 5.1 43 000 1.5 0.006 0.873
168 ¢ 3.11  3.17 7.6 8.1 7.1 6.9 000 25 0.023 0.49%
10yf 3.19 321 8.7 8.7 9.5 8.8 0.00 3.2 0033 0970
12H4f 325 3.24 9.2 98 11.3 11.7 0.00 43 0.031 0.549
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Table 1. (continued)

Nucleus Ry/2 Ru2 Roj2 Roj2 Rajo Rapo Bo c a o
exp th exp th exp th

1TAygf 3.27 325 9.1 104 135 13.6 0.00 50 0.033 0.832
176Hf 328 328 13.0 115 152 161 131 5.8 0.038 0.950
18 Yf 329 328 129 123 126 13.0 1.70 4.6 0.028 0.356
180y 331 330 118 115 129 130 192 44 0.068 0.157
176wy 322 3.21 7.8 9.1 9.6 9.5 0.00 3.5 0027 0.881
178y 324 322 9.4 8.6 10.5 89 0.00 3.2 0.039 0.987
180wy 326 325 146 131 108 115 1.64 42 0.000 0.603
182y 329 329 113 115 122 125 1.77 43 0.050 0.195
184yy 327 3.8 9.0 8.9 8.1 80 1.57 27 0.080 0.093
186y 323 3.5 7.2 7.2 6.0 63 120 21 0.09 0.130
1760 293 310 45 6.9 64 46 000 1.6 0.016 1.747
17805 3.02 312 4.9 7.2 6.6 51 000 1.8 0.017 1.836
180(yg 3.09  3.22 56 7.1 66 69 000 24 0.078 1.021
18405 320  3.21 8.7 9.9 7.9 85 121 3.1 001l 0886
1860 3.17  3.19 7.7 7.0 5.6 6.0 0.00 2.1 0.063 0.702
1880 3.08  3.15 7.0 7.2 4.1 44 107 15 0.033 0.170
1900 293  3.07 49 5.6 3.0 3.1 000 1.0 0.051 0419
228Ra 321 324 113 11.0 133 133 057 50 0016 0.177
2281 324 326 144 143 168 17.0 150 64 0.002 0.214
230 327 327 119 116 147 147 144 53 0.034 0243
282Th 328 328 148 140 159 165 1.80 59 0.022 0426

22y 329 329 145 138 182 184 1.74 6.6 0.028 0.394
By 330 330 186 183 213 218 219 7.8 0.011 0.244
236y 330 330 203 200 212 212 238 7.5 0.009 0.143
238y 330 331 206 206 236 247 238 88 0.009 0.665

238py 331 331 214 214 233 233 261 81 0.016 0.067
240py 331 331 201 199 266 266 240 94 0.018 0.117
242py 331 331 215 214 247 247 252 87 0.012 0.107
23Cm 331 331 250 248 242 243 272 85 0.004 0.159
250¢f 332 331 270 269 242 242 288 84 0.003 0.053

In terms of the superpotential and the deformation function, the shape invari-
ance condition gives,

W2 (i, vis B) + fF(B)W (i, vis; B)
= W?(pit1, vie1; B) — fF(BYW' (tig1, vig1; B) + €ix1, (15)

wheret = 0,1,2,..., uo = i, vo = v, and is equivalent to
i 2 2 Hi
(ﬁ-f-lhﬂ) +(1+aﬁ)(—@+w

- (Niﬁﬂ + l/i+15)2 -1+ aﬂz)( N Mégl + V”l) i1, (16)
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We obtain,

pi(pi — 1) = pri1 (i1 + 1),
vi(vi +a) = vig1(Vig1 — a), (17)
203V — i@ + Vi = 2011 Vi1 + fig1@ — Vig1 + i
Their solutions are
i = b — 1, v; = v +ia, (18)
and
€it1 = 2(pivi — pig1Vie1) — (i + pigr)a + v + Vi (19)

From these relations and the termination to the n-th member the energy spectrum
of the model is determined as,

€n = %Zéz = %[k0+%a(3+2A1+2A2+A1A2) 20)
=0

+2a(2 + Ay + Ag)n + 4an?], n=20,1,2,...,

with Ay = /1 +4k_q, Ay = /1 + 4%. The ground state band is ob-
tained from n = 0, while the quasi-3; band is obtained from n = 1, and the
quasi-J3 band is obtained from n = 2.

4 Fitting

In [7] the above energy spectrum was fitted for the cases of y-unstable and de-
formed axially symmetric nuclei. The fitting measure was the Gaussian error,

(n—DE@])? @b

o % Sy (Eileap) — Ei(th))?

In the case of deformed axially symmetric nuclei, three free parameters re-
main for the comparison to the experimental data. These are (3, which is fitted to
a specific nucleus and shows the deformation of its ground state, a, which shows
the DDM magnitude in this nucleus, and ¢, which controls the ~y-vibrations for
the axially prolate case. Some results are shown in two tables.

In the first table the agreement for the spectra is very good in most cases.
Disagreement is observed in those nuclei which are close to the X(5) limit, such
as 199Nd, 152Sm, 154Gd, 15Dy. This behavior is expected, because a flat poten-
tial is appropriate for the X(5) limit, not the Davidson one.

In the second table the ground state, 1 and 7; bands in the cases of 238y
and 192Dy are compared to experimental data [12]. Both the bandheads and the
spacings within bands are in general well reproduced. This is particularly true
for the ground state and the y; bands. The deviation in the gsb of 62Dy reaches
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Table 2. Normalized [to the energy of the first excited state, F(2;)] energy levels of the
ground state band (gsb) and the 81 and 71 bands of **?Dy and 234U, obtained from the
Bohr Hamiltonian with 3-dependent mass for axially symmetric prolate deformed nuclei
using the parameters given in Table 1, compared to available experimental data [12].

l62py 162y 2385 23815 l62py  l62py 288y 28y
L exp th exp th L exp th exp th
gsb gsb gsb gsb ol1 %! Y1 Y1

0 0.00 0.00 0.00 0.00 2 11.0 11.2 23.6 24.7
2 1.00 1.00 1.00 1.00 3 11.9 12.1 24.6 25.5
4 3.29 3.30 3.30 3.31 4 13.2 13.3 259 26.7
6 6.80 6.80 6.84 6.86 5 14.7 14.7 274 28.1
8 11.41 11.41 11.54 11.57 6 16.4 16.5 29.2 29.8
10  17.04 17.01 17.27 17.33 7 18.5 18.5 31.2 31.7
12 23,57 2349 23.97 24.06 8 20.7 20.8 335 33.9
14 3090 30.74 31.51 31.63 9 233 233 36.0 36.3
16 3890  38.70 39.82 3997 10 259 26.0 38.8 39.0
18  47.58  47.28 48.78 4898 11 29.0 28.9 41.7 41.9

20 5831 5861 12 314 321 449 450
2 6831 6877 13 355 355 483 483
24 7871 7944 14 394 399 519 518
26 89.46 9055 15 557 555
28 10057 102.08 16 597 594
30 11210 113.99 17 639 634
18 682 677

By B By B 19 727 720

0 173 157 206 206 20 773 766
2 180 167 215 216 21 82.1 813
4 195 190 235 240 22 87.0  86.1
6 219 226 23 919  91.0
8§ 246 274 24 97.0  96.1
25 1021 1013

26 1074 106.6

27 1127 112.0

0.6% at L = 18, while in the gsb of 238U it reaches 1.7% at L = 30. The
experimental levels of the ; band of 52Dy (up to L = 14) extend over 28.4
energy units, while the corresponding theoretical predictions spread over 28.7
units, the difference being of the order of 1%. Similarly in 23U the experimental
spread of the v; band (up to L = 27) is 89.1 energy units, while the theoretical
one is 87.3 units, the difference being of the order of 2%.

On the other hand, the theoretical level spacings within the 3; bands are
larger than the experimental ones. It is worth mentioning that results for B(E2)
transition rates in the two cases [7], reveal a similar behavior. B(E2)’s are in
overall good agreement with the experimental data, apart from the 3; — gsb
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transitions. The theoretical predictions are overestimating these transitions.

This behavior along with the (3; bands could be seen as an effect of the
Davidson potential. It rises too fast in its right part as seen in Figure 1, thus
producing a large gap between the ground state and the (; bands and in ad-
dition increasing their interlevel spacing. However, as it has been pointed out
in [13], the form of the quadrupole operator should be tested by changing the
mass coefficients of the Bohr Hamiltonian.

5 Conclusion

The motivation to adopt a DDM framework in the Bohr Hamiltonian is described
in [6]. A treatment of the 3 vibrations through SUSYQM techniques results im-
mediately in a DDM behavior. The application of the Davidson potential in the
resulting Schroedinger equation yields an overall good agreement for the axially
symmetric prolate nuclei, apart from X(5) candidates. An encouraging fact for
the model is the agreement to the data for large values of angular momenta in
the ground state and +; bands for the cases of 238U and '52Dy. However, the
behavior of 3; bands does not share this success.

References

[1] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26 (1952) 14.
[2] C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 37 (2004) 4267.
[3] F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics, World
Scientific, Singapore (2001).
[4] B.Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 38 (2005)
2929.
[5] D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Lett. B 683
(2010) 264.
[6] D.Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, In: Nuclear Theory,
Vol. 29, ed. A. Georgieva and N. Minkov, Heron Press, Sofia, (2010) 179.
[7] D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83
(2011) 044321.
[8] C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 36 (2003) 10373.
[9] C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 37 (2004) 10095.
[10] D. Bonatsos, these proceedings.
[11] P.M. Davidson, Proc. R. Soc. London Ser. A 135 (1932) 459.
[12] Nuclear Data Sheets, as of December 2005.
[13] R.V.Jolos, P. von Brentano, Phys. Rev. C 77 (2008) 064317.

206





