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Abstract. The U(5), SU(3), and O(6) symmetries of the Interacting Boson
Model (IBM) have been traditionally placed at the vertices of the symmetry
triangle, while an O(5) symmetry is known to hold along the U(5)-O(6) side of
the triangle. We construct for the first time a symmetry line in the interior of
the triangle, along which the SU(3) symmetry is preserved. This is achieved
by using the contraction of the SU(3) algebra to the algebra of the rigid rotator
in the large boson number limit of the IBM. The line extends from the SU(3)
vertex to near the critical line of the first order shape/phase transition separating
the spherical and prolate deformed phases. It lies within the Alhassid–Whelan
arc of regularity, the unique valley of regularity connecting the SU(3) and U(5)
vertices amidst chaotic regions, thus providing an explanation for its existence.

1 Introduction

The study, carried out by Alhassid and Whelan, of chaotic properties at the sym-
metry triangle [1] of the IBM [2], brought to the surface a region [3–5] of nearly
regular behavior, inside the symmetry triangle, connecting the U(5) and SU(3)
vertices, called the Alhassid-Whelan arc of regularity. Another regular region
was known to exist along the U(5)–O(6) leg of the triangle. While the existence
of the latter is known to be due to the underlying SO(5) symmetry, a common
subalgebra of both U(5) and O(6), the symmetry underlying the arc has remained
an open question.

The presence of (near) regularity presupposes the existence of some under-
lying (approximate) symmetry. A well–known hallmark of SU(3) symmetry, is
the degeneracy within sets of bands comprising a given irreducible representa-
tion (irrep), such as those between the levels of the β band and those (with the
same L) of the γ band. At a recent study [6], by imposing the 2+

γ = 2+
β degen-

eracy in the IBM framework, a line was found inside the symmetry triangle of
the IBM, starting from the SU(3) vertex, reaching the shape/phase coexistence
region [7], lying very close to the arc of regularity. The analysis of Ref. [6] was
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limited to the low-lying part of the spectrum, while the study of Alhassid and
Whelan [3–5] took into consideration the whole spectrum.

In the present work, we study the presence of regularity in the arc using
quantal signatures of chaos and we study Hamiltonians that approximately com-
mute with the SU(3) generators by considering the large–boson–number limit of
the IBA. We also derive an analytic expression for the locus of points of these
Hamiltonians inside the symmetry triangle of the IBM. This is achieved by using
the contraction [8] of the SU(3) algebra to the [R5]SO(3) algebra [9, 10] of the
rigid rotator [11].

In Section 2, we describe the Hamiltonian of the model. In Section 3, using
statistical tools, we see whether the arc is characterized by regularity or chaos.
In Section 4, the analytic expressions of the locus of points of the commutation
of the Hamiltonian with the SU(3) generators are derived, using two different
methods. The conclusions are presented in Section 5. Necessary values of the
commutation relations and matrix elements are given in the Appendices of [12].

2 The Hamiltonian

The Interacting Boson Model (IBM) comprises a system of N two-state bosons:
a lower energy L=0 (s-boson) state and a higher energy L=2 (d-boson) state.
The 36 bilinear combinations (s†s, s†d̃μ, d

†
μs, d

†
μd̃ν) form a U(6) dynamical al-

gebra. The model has 3 dynamical symmetries, U(5), SU(3), and O(6), which
correspond to vibrational, rotational and γ-unstable nuclei respectively. These
dynamical symmetries are placed at the vertices of the symmetry triangle (Cas-
ten’s triangle) [1], shown in Figure 1, which is the parameter space of the model.

Figure 1. (a) IBA symmetry triangle with the three dynamical symmetries, the Alhassid–
Whelan arc of regularity (10), the present line of (9) (labelled as analytic), the loci of
the degeneracies E(2+

β ) = E(2+
γ ) (dashed line on the right for NB = 250 [6] and

E(4+
1 ) = E(0+

2 ) (doted line on the left for NB = 250 [6]). (b) The four different points
where calculations were performed.
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In what follows we use the IBM Hamiltonian [3–5]

H (η, χ) = c

[
ηn̂d +

η − 1
NB

Q̂χQ̂χ

]
, (1)

where n̂d = d† ·d̃ is the d boson number operator, Q̂χ = (s†d̃+d†s)+χ(d†d̃)(2)

is the quadrupole operator, andNB is the number of valence bosons. The param-
eters (η, χ) are the coordinates of the triangle and serve for symmetry breaking.

η ranges from 0 to 1, and χ ranges from 0 to −√
7

2 = −1.32. Numerical calcula-
tions of energy levels have been performed using the code IBAR [13] which can
handle bosons up to NB=250.

3 Quantal signatures of chaos

As was already mentioned, the study of Ref. [6] was limited to the low part of
the spectrum, where degeneracies occur. In order to study the whole spectrum
one needs to use statistical tools. One of them is the nearest neighbor spacing
distribution, P(S). It is the probability that two adjacent energies differ by an
amount of S.

In this section, using the nearest neighbor spacing distribution, we compare,
in terms of chaoticity, a point which is characterized by regularity, like the point
on the SU(3) vertex, which has SU(3) symmetry, a point on the arc and two
points above and below the arc (Figure 1b). The energies for the whole spectrum
at the above four points were found and the nearest spacing distribution of these
energies was drawn for each different point. Then, these distributions were fitted
to the Brody distribution [14]. The Brody distribution, which is characterized by
the parameter ω,

P (S) = (1 + ω)RSωexp(−RS1+ω), (2)

whereR = Γ
[

2+ω
1+ω

]1+ω

, interpolates between Poisson statistics (ω = 0), which

characterize a regular system, and the Wigner distribution (ω = 1), which cor-
responds to a chaotic system. The value of the ω derived by the fit (Figure 2)
implies that indeed the point on the arc is more regular than the points above and
below the arc.

4 The SU(3) symmetry

4.1 Commutation relations

In order to see whether a system has an underlying SU(3) symmetry, the Hamil-
tonian of the system has to commute with the generators of SU(3). The genera-
tors of the SU(3) algebra [2] are the angular momentum operators

L̂ξ =
√

10(d†d̃)1ξ , (3)
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Figure 2. The histograms for the whole spectrum, for the 4 different points described in
the text, for L=0 and NB = 175 bosons. The ω values are also shown for each particular
point.

and the quadrupole operators

Q̂
(2)
SU(3),ξ = (s†d̃+ d†s)(2)ξ −

√
7

2
(d†d̃)(2)ξ . (4)

The Hamiltonian of (1) does commute with the angular momentum operators
L̂ξ by construction, since it is a scalar quantity. We will examine the special
conditions under which the Hamiltonian also commutes (approximately) with
the quadrupole operators.

The first term of the Hamiltonian gives

[Ĥ1, Q̂
(2)
SU(3),ν ] = cη[n̂d, Q̂

(2)
SU(3),ν ] = cη(d†s− s†d̃)(2)ν . (5)

Using

Q̂
(2)
χ,ξ = Q̂

(2)
SU(3),ξ +

(
χ+

√
7

2

)
(d†d̃)(2)ξ , (6)

in the second term of the Hamiltonian one gets the intermediate result
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[Q̂(2)
χ · Q̂(2)

χ , Q̂
(2)
SU(3),ν ] =

=
∑

ξ

(−1)ξ
{
[Q̂(2)

SU(3),ξ, Q̂
(2)
SU(3),ν]Q̂(2)

χ,−ξ + Q̂
(2)
χ,ξ[Q̂

(2)
SU(3),−ξ, Q̂

(2)
SU(3),ν ]

+
(
χ+

√
7

2
){

[(d†d̃)(2)ξ , Q̂
(2)
SU(3),ν ]Q̂(2)

χ,−ξ+Q̂(2)
χ,ξ[(d

†d̃)(2)−ξ, Q̂
(2)
SU(3),ν ]

}}
. (7)

In the large N limit, (7) can be simplified. In this limit, the eigenvalue
expression for the second order Casimir of SU(3) reduces to just the λ2 term
for SU(3) irreducible representations (irreps) (λ, μ) with λ >> μ and hence
the ground state band [which belongs to the (2N,0) irrep] becomes energetically
isolated from all other excitations. That is, SU(3) effectively reduces to a simple
rigid rotator. This situation is formally known as the contraction of SU(3) to
R5[SO(3)] [9, 10] and occurs when the Q(2)

SU(3) operators can be replaced by
mutually commuting quantities. In the large N limit, where contraction occurs,
the commutators in the first two terms in (7) will vanish and terms containing
(d†d̃)(k) can be omitted. Furthermore, Q̂(2)

χ can be replaced by Q̂(2)
SU(3) and

Q̂
(2)
SU(3) can be replaced by the intrinsic quadrupole moment (a scalar), which

is N
√

2 in the present case. So, in the large N limit, the commutator for the
second part of the Hamiltonian becomes

[Ĥ2, Q̂
(2)
SU(3),ν ] = c(η − 1)2

√
2

(
χ+

√
7

2

)
(d†s− s†d̃)(2)ν . (8)

However, we want a vanishing commutator, so the coefficients of (d†s− s†d̃)(2)ν

in (7) and (8) should cancel, leading in the large N limit to the condition

χ(η) =
1

2
√

2
η

(1 − η)
−

√
7

2
. (9)

The expression of the Alhassid–Whelan arc of regularity [3–5] is given by
[15]

χ(η) =
√

7 − 1
2

η −
√

7
2
. (10)

The expressions of Eqs. (9) and (10) are visualized in Figure 3. The two
equations give very similar predictions for values of η between 0 and 0.6, i.e.,
from the SU(3) vertex until quite close to the critical line.

4.2 Matrix Elements

At the previous subsection, we replaced the quadrupole operator Q̂(2)
SU(3) by the

intrinsic quadrupole moment. To justify this, we examine the conditions under
which the matrix elements of [Ĥ1, Q̂

(2)
SU(3),ν ] and [Ĥ2, Q̂

(2)
SU(3),ν ] lead to a van-

ishing result, within the ground state band. The consideration of matrix elements
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within the ground state band is similar to the condition discussed earlier in the
context of Eq. (7), where the Q(2)

SU(3) operators simplify when the ground state
band becomes energetically isolated.

Using the standard formalism for treating matrix elements, one finds for the
first and second terms of the Hamiltonian, after replacing Q̂(2)

χ by Q̂(2)
SU(3)

〈[N ], (2N, 0), χ̃ = 0, L||[Ĥ1, Q̂
(2)
SU(3)]||[N ], (2N, 0), χ̃ = 0, L〉

= − 2
3
√

7
cηNR1

√
2L+ 1, (11)

〈[N ], (2N, 0), χ̃ = 0, L||[Ĥ2, Q̂
(2)
SU(3)]||[N ], (2N, 0), χ̃ = 0, L〉

=
1

7
√

2
c(1 − η)

(
χ+

√
7

2

)
q0R2

√
2L+ 1, (12)

where χ̃ is the Vergados quantum number [16] and R1, R2 are complicated ex-
pressions [12] of the number of bosons N and the angular momentum L. In the
large N limit and for L not too small, we obtain R1 = 1 and R2 = 16/3.
Replacing the intrinsic quadrupole moment q0 by its value (N

√
2), we get van-

ishing matrix elements in the large N limit when

χ(η) =
√

7
8

η

(1 − η)
−

√
7

2
. (13)

The expression of (13) is also visualized in Figure 3, where one can remark
its similarity to (9).

Figure 3. Location of the arc of regularity, as described by the original (10), and as
predicted by the findings of the present work, (9) and (13). The η axis has been reversed,
in order to correspond directly to Figure 1.
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5 Conclusion

The arc of regularity is a narrow strip of nearly regular behavior inside the sym-
metry triangle of the IBM. The presence of near regularity requires the presence
of some underlying approximate symmetry. We have studied the commutation
of the IBA Hamiltonian with the SU(3) generators by considering the large–
boson–number limit of the IBA and we have determined analytically a line of
approximate SU(3) symmetry taking advantage of the contraction of the SU(3)
to the R5[SO(3)], the algebra of the rigid rotator. This line follows closely the
Alhassid– Whelan arc of regularity, giving thus an explanation for its existence.
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