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Abstract.

An extension of the model of Coherent Quadrupole-Octupole Motion (CQOM)
is presented which describes energies and transition rates in the yrast and non-
yrast alternating-parity spectra of even-even nuclei. Generalized electric transi-
tion operators reflecting the complex shape properties associated with the quadru-
pole-octupole vibration modes are introduced. Model expressions for the B(E1),
B(E2) and B(E3) reduced transition probabilities within and between the differ-
ent energy sequences are derived. It is shown that the model successfully repro-
duces the yrast and non-yrast alternating-parity levels together with the related
B(E1)-B(E3) transition rates in the nuclei 152Sm, 154Gd and 236U.

1 Introduction

The appearance of alternating-parity bands in even-even atomic nuclei, as a re-
sult of the presence of quadrupole-octupole deformations, is usually attended by
enhanced electric E1 and E3 transitions between levels with opposite parity [1].
The B(E1) and B(E3) reduced transition probabilities are known to provide a
sensitive test for the structure of the alternating-parity sequences. Therefore,
their description together with the energy levels is of special importance for the
explanation of the complex quadrupole-octupole motions of nuclei.

The purpose of the present work is to implement a consistent description
of energies and transition probabilities in the yrast and non-yrast alternating-
parity bands of even-even nuclei within the model of Coherent Quadrupole-
Octupole Motion (CQOM) [2]. In the originally proposed model scheme the
yrast alternating-parity band is composed as usual by the members of the ground-
state band and the lowest negative-parity levels with odd angular momenta [2].
Recently it was suggested that the model scheme can be extended by assuming
that the excited β-bands are connected to higher negative-parity sequences with
odd angular momenta [3]. It was shown that the extended CQOM scheme is ca-
pable to reproduce the yrast and non-yrast alternating parity levels in rare-earth
and actinide nuclei. In the present work the model scheme is further extended to
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describe electric transition probabilities by taking into account the properties of
the complex quadrupole-octupole motion of the system. The extended model is
applied for the simultaneous description of energies and E1, E2 and E3 transition
rates in the alternating-parity spectrum.

In Sec. 2 the CQOM model and its extended formalism for the description
of B(E1)-B(E3) transition probabilities are shown. In Sec. 3 numerical results
and discussion on the application of the model to the nuclei 152Sm, 154Gd and
236U are presented. In Sec. 4 concluding remarks are given.

2 Model of Coherent Quadrupole–Octupole Motion

2.1 Hamiltonian and Wave Functions

The general Hamiltonian of the model is [2]

Hqo = − �
2

2B2

∂2

∂β2
2

− �
2

2B3

∂2

∂β2
3

+ U(β2, β3, I) , (1)

where β2 and β3 are axial quadrupole and octupole variables, respectively, and

U(β2, β3, I) =
1
2
C2β2

2 +
1
2
C3β3

2 +
X(I)

d2β2
2 + d3β2

3

, (2)

with X(I) = [d0 + I(I + 1)]/2. Here B2 (B3), C2 (C3) and d2 (d3) are
quadrupole (octupole) mass, stiffness and inertia parameters, respectively, while
d0 determines the potential core at I = 0. Under the assumption of coherent
quadrupole-octupole oscillations with a frequency ω =

√
C2/B2 =

√
C3/B3 ≡√

C/B, and after introducing ellipsoidal coordinates

β2 = pη cosφ, β3 = qη sinφ, (3)

with p =
√
d/d2, q =

√
d/d3 and d = (d2 + d3)/2, the collective energy of

the system is obtained in the form [2]

En,k(I) = �ω
[
2n+ 1 +

√
k2 + bX(I)

]
, n = 0, 1, 2, ...; k = 1, 2, 3, ..., (4)

where b = 2B/(�2d). The quadrupole-octupole vibration wave function is

Φπ
nkI(η, φ) = ψI

nk(η)ϕπ
k (φ), (5)

where the “radial” part

ψI
n,k(η) =

√
2cΓ(n+ 1)

Γ(n+ 2s+ 1)
e−cη2/2(cη2)sL2s

n (cη2) (6)
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involves generalized Laguerre polynomials in the variable η with c =
√
BC/�

and s = (1/2)
√
k2 + bX(I). The “angular” part in the variable φ appears with

a positive or negative parity as follows

ϕ+
k (φ) =

√
2/π cos(kφ) , k = 1, 3, 5, ... , (7)

ϕ−
k (φ) =

√
2/π sin(kφ) , k = 2, 4, 6, ... . (8)

The total wave function has the form

Ψπ
nIM0(η, φ) =

√
2I + 1
8π2

DI
M 0(θ)ψ

I
n(η)ϕ±(φ) . (9)

The energy spectrum is determined in (4) by the quantum numbers n and k.
An alternating-parity band is determined by given n and a pair of odd and even
k-values, k(+)

n and k(−)
n , corresponding to the positive and negative parity se-

quence, respectively. As suggested in [3] the sets of levels labeled by n = 0, 1
and 2 involve the ground-state band, first and second β-bands, respectively.

2.2 Transition Probabilities

The B(Eλ) transition probabilities between model states (9) are determined by

B(Eλ;nikiIi → nfkfIf ) =

=
1

2Ii + 1

∑
MiMf μ

∣∣∣〈Ψπf

nf kf If Mf 0(η, φ)
∣∣Mμ(Eλ)

∣∣Ψπi

nikiIiMi0
(η, φ)

〉∣∣∣2. (10)

The operators for electric E1, E2 and E3 transitions are defined as

Mμ(Eλ) =

√
2λ+ 1

4π(4 − 3δλ,1)
Q̂λ0D

λ
0μ, λ = 1, 2, 3, μ = 0,±1, ...,±λ. (11)

The vibration parts of these operators can be determined as

Q̂10 = M1β2β3 = M1pqη
2 cosφ sinφ (12)

Q̂20 = M2β2 = M2pη cosφ (13)

Q̂30 = M3β3 = M3qη sinφ, (14)

with q = p/
√

2p2 − 1. The electric charge factors Mλ are taken as [4]

Mλ =
3√

(2λ+ 1)π
ZeRλ

0 , λ = 2, 3 , (15)

M1 =
9AZe3

56
√

35π

(
1
J

+
15

8QA
1
3

)
, (16)
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where R0 = r0A
1/3, r0 ≈ 1.2 fm, Z is the proton number, and e is the elemen-

tary electric charge. Since there is not a unique approach to estimate the factor
M1 in the present work an effective charge e1eff is used in (16) instead of e. The
quantities J = 35 MeV and Q = 45 MeV are taken with fixed values in all
considered nuclei.

The definitions of operators (12)–(14) originally correspond to a situation
in which the nuclear shape is characterized by fixed values of the deformation
parameters β2 and β3. In this case the density distribution of the collective state
is characterized by a single maximum in the space of β2 and β3. In the case of the
model potential (2) taken with an elliptic bottom the density distribution can be
characterized by more than one maximum. This is illustrated in Figure 1, where
the density distribution |Φπ

nkI(β2, β3)|2 of the state (5) is plotted for different
k-values at n = 0 after transforming to (β2,β3) variables.

To describe the transition between the states with different numbers of max-
ima the angular parts in (12)–(14) are generalized through the replacements

cosφ→ A20(φ) =
∞∑

k=1

cos(kφ)
k

= −1
2
[ln 2 + ln(1 − cosφ)] (17)

sinφ→ A30(φ) =
∞∑

k=1

sin(kφ)
k

=
π − φ

2
+ πFloor

(
φ

2π

)
(18)

cosφ sinφ→ Â10(φ) ≡
∞∑

m=1

∞∑
n=1

cos(mφ)
m

sin(nφ)
n

. (19)

Here expansion (19) is reasonably convergent. The expressions (17) and (18)
represent even and odd Fourier expansion series, respectively. The first terms
in (17) and (19) represent the original angular (φ-) parts in operators (12)–(14).
Now these operators are redefined as

Q̂10(η, φ) = M1pqη
2A10(φ) (20)

Q̂20(η, φ) = M2pηA20(φ) (21)

Q̂30(η, φ) = M3qηA30(φ). (22)

After carrying out the integration over the rotation part in (10) one obtains

B(Eλ;nikiIi → nfkfIf ) =

=
2λ+ 1

4π(4 − 3δλ,1)
〈Ii0λ0|If0〉2R2

λ(nikiIi → nfkfIf ), (23)

with

Rλ(nikiIi → nfkfIf ) =
〈
Φπf

nf kf If
(η, φ)

∣∣∣Q̂λ0

∣∣∣ Φπi

nikiIi
(η, φ)

〉
. (24)
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Figure 1. Schematic 3D and 2D contour plots of the density distribution |Φπ
nkI(β2, β3)|2

for k = 1, I = 2 (up/mid left) and k = 2, I = 1 (up/mid right), k = 3, I = 2 (down
left) and k = 4, I = 1 (down right) at n = 0. The ellipsoidal curves outline the potential
bottom. The model space corresponds to the β2 > 0 half-plane.

By further separating the integrations over the “radial” variable η and the “an-
gular” variable φ in (24) according to (5) one obtains

R1(nikiIi → nfkfIf ) = M1pqS2(ni, Ii;nf , If )Iπi,πf

1 (ki, kf ) (25)
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R2(nikiIi → nfkfIf ) = M2pS1(ni, Ii;nf , If )Iπi,πf

2 (ki, kf ) (26)

R3(nikiIi → nfkfIf ) = M3qS1(ni, Ii;nf , If )Iπi,πf

3 (ki, kf ), (27)

where

S1(ni, Ii;nf , If ) =
∫ ∞

0

dηψ
If
nf (η)η2ψIi

ni
(η) (28)

S2(ni, Ii;nf , If ) =
∫ ∞

0

dηψ
If
nf (η)η3ψIi

ni
(η), (29)

and

I
πi,πf

λ (ki, kf ) =
2
π

∫ π
2

−π
2

Aλ0(φ)ϕπf

kf
(φ)ϕπi

ki
(φ)dφ, λ = 1, 2, 3. (30)

The integrals over η, (28) and (29), involve the “radial” wave functions (6) and
can be expressed in the following analytic form

Sl(ni, Ii;nf , If ) =
1
c l/2

[ Γ(nf + 1)Γ(ni + 1)
Γ(nf + 2sf + 1)Γ(ni + 2si + 1)

] 1
2

× Γ(nf + 2sf + 1)
Γ(1 + 2sf )

Γ(ni + si − sf − l/2)
Γ(si − sf − 1)

Γ(si + sf + l/2 + 1)
ni!nf !

× 3F2(−nf , si+sf +
l

2
+1, sf −si+

l

2
+ 1; 2sf +1, sf −si+

l

2
+1−ni; 1),

l = 1, 2, (31)

where 3F2 denotes the generalized hypergeometric function [5]. The integrals
over φ (30) involve the “angular” wave functions (7) and (8) and also can be
expressed in explicit forms by using integration of products of trigonometric
functions.

3 Numerical Results and Discussion

The extended CQOM formalism is applied to the nuclei 152Sm, 154Gd and 236U.
The model energy levels are determined by Eq. (4) as Ẽn,k(I) = En,k(I) −
E

0,k
(+)
0

(0). The parameters ω, b, d0, c, p and e1eff are adjusted by simultaneously

taking into account experimental data on the energy bands [6] and the available
B(E1)-B(E3) transition probabilities [7], [8]. For each nucleus the calculations
are performed in a net over the values of k(+)

n and k(−)
n providing the sets of

k-values for the best description. The theoretical and experimental energy levels
and transition probabilities for the three nuclei are compared in Figures 2–4. The
obtained parameter values and k-numbers are also given there. It is seen that the
model correctly reproduces the structure of the yrast and non-yrast alternating-
parity bands. Note that in 154Gd three alternating-parity bands are described in

48



Energies and Transition Probabilities in Nuclear Alternating-Parity Spectra

0

50
0

10
00

15
00

20
00

25
00

30
00

14

14

0.
00
01
3

4.
0 19

.2
 
5.4

5.5 

0.70
 

0.92 

 20
4

10
7

0.0082
0.0081 
0.0077

0.0042

32
0 

28
5

20
9

0+
0+

8+ 6+

4+ 2+ 0+

n=
1

13
-

11
-

9-
7-

7-

5-

5-

3-

3-

1-

1-

14
+

12
+

10
+ 8+ 6+ 4+ 2+

k=
1

14
+

k=
8

k=
8

7- 5- 3- 1- 0+

8+ 6+

2+4+

13
-

11
-

9-
12
+

10
+ 8+ 6+

5- 1-7-

4+

3-
Energy  [keV]

15
2 S
m

2+

k=
1

th
eo
ry

ex
pe
ri
m
en
t

n=
0

85
3.
6

99
2.
7

12
31
.4

15
53
.7

19
43
.0

23
84
.6

28
66
.5

10
7.
9

34
5.
8

68
8.
1

11
08
.2

15
84
.4

 2
10
0.
7

26
45
.9

59
0.
6

69
8.
5

93
6.
4

12
78
.7
 

16
98
.8
 

14
44
.2

15
83
.3

18
22
.0

21
44
.3

14
1

21
0

24
8 

28
4

32
2  

0.0041
0.0088
0.0056 

0.008
7

16
0 

 23
2

1.26 

0.16
 

4.6 
4.2 27

.4
 34
.6

0.
00
4

12
1.
8 

36
6.
5 

70
6.
9 

11
25
.4
 

16
09
.2
 

21
48
.5

27
36
.0
 

96
3.
4 

10
41
.1
 

12
21
.5
 

15
05
.6
 

18
79
.1
 

23
27
.0
 

28
33
.3

68
4.
7

81
0.
5

10
23
.0

13
10
.5

16
66
.4

15
10
.8

15
79
.4

17
64
.2

20
03
.6

14
4 

24
5

Fi
gu

re
2.

T
he

or
et

ic
al

an
d

ex
pe

ri
m

en
ta

la
lte

rn
at

in
g

pa
ri

ty
le

ve
ls

an
d

tr
an

si
tio

n
pr

ob
ab

ili
tie

s
fo

r
1
5
2
Sm

.
D

at
a

fo
r

en
er

gy
le

ve
ls

fr
om

[6
].

B
(E

1)
an

d
B

(E
2)

da
ta

fr
om

[7
]

an
d

B
(E

3)
da

ta
fr

om
[8

].
Pa

ra
m

et
er

va
lu

es
:

ω
=

0
.2

9
5

M
eV

/�
,
b

=
2
.4

5
0

�
−

2
,
d
0

=
7
8
.8

�
2
,
c

=
1
1
3
.2

,
p

=
0
.8

5
4

,
e1 ef

f
=

1
.0

1
e.

49



N. Minkov, S. Drenska, M. Strecker, W. Scheid

0

500

1000

1500

2000

2500

3000

3500

4000

4500

21

21
0.0057 

235 

0.0064

0.0054

0.0485

52.0 

19.6

22.6 

0.86 

97
 

177 1.23 

2194.1

680.7

10 +

2476.8

8 +

4102.0

3519.1

2981.3
13 -

15 -

7 -

9 -

2060.6
2201.8

612.8

10 +

8 +

671.0

9 -

25.4

0.0436

0.0099

1047.6

1414.4

1701.4

1418.2

1182.1

1797.0
1617.1

815.5

1365.9

1649.1
1803.0

1644.1

1418.9

1318.6

1719.4

1324.4

715.4

945.3

1756.5

1241.3
1251.6
1404.2

1674.1

2040.5

2482.3

4087.2

3404.5

2777.3

2184.7

1637.1

1144.4

717.7

371.0

3651.2

4226.7

3960.1

3326.0

3107.0

2602.0
2714.6

2145.7

1749.9

2132.5

1589.0

1096.4

332.5

360 

312 

285 

245 

157 
160 

340 

306 

273 

1193.0

102.6

0 +

3 -

0 + 2 +

4 +

17 -
18 +

n=
0

2 +

3 -1 -
4 +2 +

17 -

15 -

8 +

16 +

18 +

16 +

n=
1

k=
8

k=
1

0.0216

 

0 +
0 +

6 +
4 +

2 +0 +

n=
2

11 -

7 -5 -
3 -

3 -
1 -

1 -

14 +

12 +

10 +

8 +6 +4 +2 +

k=
3

14 +

k=
6

k=
10

5 -

3 -1 -0 +

6 +

2 +
4 +

13 -

11 -

9 -
12 +

10 +
5 -1 - 7 -

6 +

3 -

Energy  [keV]

154G
d

4 +

k=
1

theory
experim

ent

0.0102

1057.9

1427.7

123.1

1283.8

1709.3

1469.1

Figure
3.

T
heoreticaland

experim
entalalternating-parity

levels
and

transition
probabilities

for
1
5
4G

d.
D

ata
for

energy
levels

from
[6].

B
(E

1)
and

B
(E

2)
data

from
[7]

and
B

(E
3)

data
from

[8].
Param

eter
values:

ω
=

0
.3

0
6

M
eV

/�,
b

=
2
.9

4
8

� −
2,

d
0

=
1
1
4
.7

�
2,

c
=

1
1
3
.4,

p
=

0
.7

7
7,

e
1eff

=
1
.0

4
8

e.

50



Energies and Transition Probabilities in Nuclear Alternating-Parity Spectra

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

19
-

28
22
.0
 22

38
0 36
0 

15

64
5

49
3 42
9

62

2.7x10
-8

96
6.
6 

96
0.
3 

10
35
.6
 

11
64
.0
 

10
50
.9
 

91
9.
1 

25
0 

35
7  

38
5

49
0

67
0

67
0

 4
5.
2 

 1
49
.5
 

 3
09
.8
 

 5
22
.3
 

 7
82
.3
 

 1
08
5.
3 

35
49
.9
 

45
48
.9
 

 1
42
6.
3 

 1
80
0.
9 

 2
20
3.
9 

 2
63
1.
7 

68
7.
6 

74
4.
2 

84
8.
1 

99
9.
6 

11
98
.4
 

14
43
.4
 

97
0.
9

10
27
.6

  4
3.
3

14
3.
5

29
8.
4

50
5.
0

75
9.
5

10
57
.9

13
95
.9

17
69
.3

21
74
.1

26
06
.7

32
99
.1

 3
54
2.
4

50
82
.9

47
07
.4

30
63
.8

28
73
.3

14
67
.6

99
2.
1

82
3.
4

12
07
.9

63
8.
0

23
7

34
1

38
2

45
0  

47
1 

51
5 

53
9

59
0

2.7x10
-8

62

2+ 0+

15
-

17
-

29
-

27
-

25
-

23
-

21
-

19
-

17
-

15
-

20
+

22
+

24
+

26
+

28
+

30
+

18
+

16
+

20
+

28
+

30
+

26
+

24
+

22
+

18
+

16
+

52
0 

51
0

0+
0+

4+

n=
1

13
-

11
-

9- 7-
5-

5-
3-

3-
1-

1-

14
+

12
+

10
+ 8+ 6+ 4+ 2+

k=
3

14
+

k=
4

k=
8

5- 3- 1-

0+2+4
+

13
-

11
-

9-

12
+

10
+

8+ 6+

5- 1-7-

4+

3-

Energy  [keV]

23
6 U

2+

k=
1

th
eo
ry

ex
pe
ri
m
en
t

n=
0

70
4.
7

17
67
.6

21
04
.2

24
74
.0

37
48
.4

42
18
.7

52
12
.6

 4
03
9.
9

45
54
.0

88
5.
6

92
8.
5

61
7

11
67
.0
 

10
41
.5

40
8

56
4 

41
0 

45
0 

 3
08
0.
9 

40
38
.9

50
77
.0
 

17
32
.4
 

20
60
.4
 

24
26
.4
 

39
0 

Fi
gu

re
4.

T
he

or
et

ic
al

an
d

ex
pe

ri
m

en
ta

l
al

te
rn

at
in

g
pa

ri
ty

le
ve

ls
an

d
tr

an
si

tio
n

pr
ob

ab
ili

tie
s

fo
r

2
3
6
U

.D
at

a
fo

r
en

er
gy

le
ve

ls
fr

om
[6

].
B

(E
1)

an
d

B
(E

2)
da

ta
fr

om
[7

]
an

d
B

(E
3)

da
ta

fr
om

[8
].

ω
=

0
.4

0
2

M
eV

/�
,b

=
1
.4

0
4

�
−

2
,d

0
=

5
3
9
.3

�
2
,c

=
3
4
3
.4

,p
=

0
.9

4
9

,e
1 ef

f
=

0
.1

3
4

e.

51



N. Minkov, S. Drenska, M. Strecker, W. Scheid

total. In the three nuclei the B(E1) transition probabilities between the ground-
state band (gsb) and the first negative-parity band are described quite well. The
value of the interband B(E1) probability B(E1;1−1 → 2+

2 ) in 152Sm is overes-
timated by one order while the B(E1;1−1 → 0+

2 ) and B(E1;1−1 → 2+
2 ) values

in 154Gd are well described. The B(E2) intraband probabilities within the gsb
of 152Sm and 154Gd are well described, while in 236U the description is good
as overall up to a quite high I = 26. The E2 interband transitions between
members of the first β-band and gsb in 152Sm and 154Gd are also well described
with a few exceptions. The B(E3;3−1 → 0+

1 ) values in 152Sm and 154Gd are
exactly reproduced. In 236U this probability is a bit underestimated but, the
B(E3;1−1 → 4+

1 ) value is exactly reproduced.

4 Conclusion

In conclusion, the present work provides an extended scheme of the collec-
tive model of Coherent Quadrupole and Octupole Motion (CQOM) capable of
describing the yrast and non-yrast alternating parity spectra and the attendant
B(E1), B(E2) and B(E3) transition probabilities in even-even nuclei. The the-
oretical formalism and the obtained model descriptions for the nuclei 152Sm,
154Gd and 236U outline a possible way for the development of nuclear alternating-
parity spectra towards the highly non-yrast region of collective excitations. The
results suggest that a similar extension of the model can be reasonable for the
non-yrast spectra of odd-mass nuclei with quadrupole-octupole deformations.
This is the subject of further work.
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