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Angular Momentum Projection with Pfaffian
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Abstract. Recent developments to rewrite the Onishi formula for an evalua-
tion of the so-called norm overlap kernel necessary in angular momentum pro-
jection are to be discussed. The essential ingredients in the development, that
is, the Fermion coherent states, the Grassmann numbers, and the Pfaffian, are
explained.

1 Introduction

The Hartree-Fock-Bogoliubov (HFB) method is greatly successful in descrip-
tions of nuclear many-body systems [1]. Particularly, correlations to cause nu-
clear deformation and pairing are effectively taken into account through the HFB
ansatz

|HFB〉 = N exp

⎛⎝1
2

∑
ij

Zija
†
ia

†
j

⎞⎠ |0〉, (1)

where the creation and annihilation operators for nucleons are denoted as (a, a†)
and the associated vacuum |0〉 is defined as

ai|0〉 = 0. (2)

The variation parameter Zij is expressed as a skew-symmetric matrix and it is
written in terms of the Bogoliubov transformation

Z = (V U−1)∗. (3)

The Bogoliubov transformation is a canonical transformation from the particle
basis (a, a†) to a quasi-particle basis (β, β†)

ai =
∑

j

Uijβj + V ∗
ijβ

†
j . (4)

The condition for a canonical transformation restricts U and V to satisfy the
following relations.

U †U + V †V = 1, UU † + V ∗V T = 1, (5)

UTV + V TU = 0, UV † + V ∗UT = 0. (6)
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The normalization constant N is written as

N =
√

det(U) (7)

thanks to the Onishi formula [2, 3].
The HFB ansatz breaks the rotational symmetry, so that it is a wave packet

with respect to angular momentum projection. To compare with experimental
data from a quantum mechanical viewpoint, it is necessary to project out a com-
ponent with a good angular momentum.

|IM〉 =
∑
K

gKP̂
I
MK |HFB〉, (8)

where an angular momentum projection operator is given as

P̂ I
MK =

2I + 1
8π2

∫ ∫ ∫
dα sinβdβdγDI∗

MK(αβγ)R̂(αβγ). (9)

The rotational operator R̂(αβγ) is defined as

R̂(αβγ) = exp(−iαĴ3) exp(−iβĴ2) exp(−iγĴ3). (10)

Wigner’s D function, a representation of the group SO(3), is denoted asDI
MK(αβγ)

[4]. Hereafter, the Euler angles α, β, γ are collectively expressed as Ω.
To carry out the angular momentum projection calculation, the Hill-Wheeler

equation needs to be solved [5].∑
K′

(HI
KK′ − EIN I

KK′)gK′ = 0. (11)

The energy and norm matrices are written as(
HI

KK′

N I
KK′

)
=
∫
dΩDI∗

KK′(Ω)
( H(Ω)

N (Ω)

)
, (12)

where N (Ω) and H(Ω) are called respectively as the norm and energy overlap
kernels, and they are defined as( N (Ω)

H(Ω)

)
= 〈HFB|

(
1̂
Ĥ

)
R̂(Ω)|HFB〉. (13)

The evaluation of these overlap kernels has been difficult, particularly for
cranked HFB states to simulate high-spin states. The problem lies in the assign-
ment of the sign of the norm overlap kernel because it is evaluated with help of
the Onishi formula

N (Ω) =
√

det(U †D†(Ω)U + V †DT (Ω)V ). (14)

The determinant inside the square root is generally a complex function of the
Euler angle. This means that it is necessary to find a proper branch for given Ω
of the norm overlap kernel.
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2 The Sign Problem and Nodal Lines

The sign assignment of the norm overlap kernel can be carried out by tracking
the change of the phase θ(Ω) of N (Ω) = r(Ω) exp(iθ(Ω)). This approach
relying on the continuity and differentiability of the norm overlap kernel was
first developed by Hara, Hayashi and Ring [6].

However, it was found later that such a method does not always work, in
particular, in the cases that high-spin states are considered [7]. According to
my previous work [7], angular momentum projection can be executed success-
fully for non-cranked HFB states as well as low-spin states. However, the highly
cranked HFB shows a peculiar feature which prevents a successful angular mo-
mentum projection. The feature is originated from the zeros of the norm overlap
kernel, that is, N (Ω) = 0. Due to the three dimensionality of the Euler space,
the collection of such zeros forms a closed loop, which is named “nodal line”.
The sign assignment method developed by Hara, et al. does not work in the
vicinity of the nodal lines in numerical calculations. As a result, wrong sign
assignments are made to give rise to negative eigenvalues for the Norm matrix
N I

KK′ , which need to be positive definite by definition.
The improvement was found recently by the author, and it solves the sign

assignment problem in the framework of the Onishi formula. The work is in
preparation for publication [8].

Another new approach was proposed recently by Robledo [9], and several
new works followed quite recently [10–12]. In the following, I would like to
concentrate on the latter approach.

3 Pfaffian and a Square Root of Determinant

Like a determinant of a matrix A, a Pfaffian is a polynomial consisting of ma-
trix elements of a matrix A. But it is defined only for skew-symmetric matrix
AT = −A. When the dimensionality of A is odd, the corresponding Pfaffian
identically vanishes. In the even dimensional cases, there is a relation between
the determinant and the Pfaffian of a skew-symmetric matrix A, as

det(A) = {Pf(A)}2. (15)

In many cases, the relation is inverted to define the Pfaffian in terms of the de-
terminant, as

Pf(A) =
√

det(A). (16)

Of course, it is possible to chose the negative sign in taking the square root, but
it is not natural in many cases.

Robledo found that the Onishi formula can be expressed in terms of the Pfaf-
fian [9]. Without a square-root operation, there would not be the sign assignment
problem in the norm overlap kernel.
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Nonetheless, Pfaffian is just a result in an attempt to rewrite the Onishi for-
mula. What is more essential is an introduction of the Fermion coherent states,
associated with eigenvalues expressed in terms of Grassmann numbers [13].

4 Fermion Coherent States and Grassmann Numbers

The Fermion coherent state |ξ〉 is defined as an eigenstate of the annihilation
operator ai, that is,

ai|ξ〉 = ξi|ξ〉, (17)

where ξ means (ξ1, ξ2, · · · , ξM ). If ai satisfies the anticommutation relations,
aiaj = −ajai and aia

†
j = −a†jai+δij , then ξi needs to be a Grassmann number,

which satisfies the anticommuation relation as well.

ξiξj + ξjξi = 0. (18)

The special case happens when i = j, which results in ξ2i = 0. This means that
the algebra related to the Grassmann number contains only bilinear polynomials
[13].

An extension of the Fock space with the Grassmann numbers is necessary
so as to consider a space spanned by the Fermion coherent states. The Fermion
coherent states form a complete set, and its completeness relation is given as∫ ∏

i

dξ∗i dξi exp(−
M∑
j

ξ∗j ξj)|ξ〉〈ξ| = 1̂. (19)

However, the Fermion coherent states are not orthogonal, so that an overlap
between two Fermion coherent states is calculated to be

〈ξ|ξ′〉 = exp(
∑

i

ξ∗i ξ
′
i). (20)

Like the generator coordinate method, an expansion in terms of the Fermion
coherent states cannot avoid an issue of the overcompleteness. At any rate, an
arbitrary quantum state Φ in the Fock space is expanded through the Fermion
coherent states as

|Φ〉 =
∫ ∏

i

dξ∗i dξi exp(−
M∑
j

ξ∗j ξj)Φ(ξ∗)|ξ〉, (21)

where Φ(ξ∗) = 〈ξ|Φ〉.
The Fermion coherent state can be expressed as

|ξ〉 = exp

(
−

M∑
i

ξia
†
i

)
|0〉, (22)

which is similar to the Bosonic coherent state.
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5 Calculation of Norm Overlap with Fermion Coherent States

In the following discussions, we consider HFB states without the normalization
constant, or N = 1 for the sake of simplicity. (An amendment can be easily
done for the normalization in later stages.)

Thus, a norm overlap is written as

N (Ω)=〈HFB|R̂(Ω)|HFB〉 = 〈0|e 1
2

P
ij Z∗

ijajaiR̂(Ω) exp
1
2

P
kl Zkla

†
ka†

l |0〉. (23)

Thanks to R̂(Ω)|0〉 = |0〉, a rotated HFB state can be expressed as

R̂(Ω)|HFB〉 = exp
(1

2

∑
ij

ZijR̂(Ω)a†ia
†
jR̂

†(Ω)
)
R̂(Ω)|0〉 (24)

= exp
(1

2

∑
ij

Zija
†
i (Ω)a†j(Ω)

)
|0〉. (25)

Using the Baker-Hausdorff formula, the “rotated” creation operator is expressed
in terms of the original creation operator as

a†j(Ω) = R̂(Ω)a†i R̂
†(Ω) =

∑
i

Dji(Ω)a†i . (26)

Therefore, in the original basis, the rotated HFB state is expressed as

R̂(Ω)|HFB〉 = exp
(1

2

∑
ij

Zij(Ω)a†ia
†
j

)
|0〉, (27)

where
Z(Ω) = D(Ω)ZDT (Ω). (28)

As a result of the above expression and Eq.(3), the Bogoliubov transformation
matrix in the rotated framework is given as

U(Ω) = D(Ω)U, V (Ω) = D∗(Ω)V. (29)

The rotated norm overlap is hence simplified to

N (Ω) = 〈HFB|R̂(Ω)|HFB〉 = 〈0|e 1
2

P
ij Z∗

ijajai exp
1
2

P
kl Zkl(Ω)a†

ka†
l |0〉. (30)

Inserting the completeness relation of the Fermion coherent state, the norm
overlap kernel becomes

N (Ω) =
∫ ∏

α

dξ∗αdξαe−
P

α ξ∗
αξα〈0|e 1

2
P

ij Z∗
ijajai |ξ〉〈ξ| exp

1
2

P
kl Zkl(Ω)a†

ka†
l |0〉

(31)

=
∫ ∏

α

dξ∗αdξαe−
P

α ξ∗
αξαe

1
2

P
ij Z∗

ijξjξi exp
1
2

P
kl Zkl(Ω)ξ†

kξ†
l 〈0|ξ〉〈ξ|0〉.
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Using a fact that 〈ξ|0〉 = 1, the above integral can be summarised to the Gaus-
sian integral form:

N (Ω) =
∫ ∏

i

dξ∗i dξiG(ξ̄), (32)

where the Gaussian of the Grassmann numbers ξi is defined as

G(ξ̄) ≡ exp
(

1
2
ξ̄T

Xξ̄

)
. (33)

Here, the 2M -dimensional Grassmann vector ξ̄ is defined as

ξ̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ∗1
ξ∗2
...
ξ∗M
ξ1
ξ2
...
ξM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

In this basis, the 2M -dimensional matrix X is given as

X =
(
Z(Ω) −I
I −Z∗

)
. (35)

Following the rules of the Grassmann integral carefully, the Gaussian inte-
gral gives rise to

N (Ω) = sMPf(X), (36)

where the phase factor is given as sM = (−1)M(M+1)/2. This formula was first
derived by Robledo [9].

6 Normalisation

The above formula does not take the normalization into account, which is given
in Eq.(7). Together with Eq.(29), the normalization constant of the rotated HFB
state is calculated to be

N(Ω) =
√

Det(U(Ω)) =
√

Det(D(Ω)U) =
√

Det(U), (37)

which means that the normalisation is invariant against rotation. (The unitarity
of the rotational group is used in the above result.)

Therefore, the complete expression for the Pfaffian formula becomes

N (Ω) = sMDet(U)Pf(X). (38)
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In my preliminary numerical calculations using the above formula, I found
that the Pfaffian part tends to become an extremely big number, while the De-
terminant of U tends to be very small. A product of a very small and a very
large numbers may cause a numerical error in obtaining the norm overlap ker-
nel, which needs a careful numerical treatment. On the contrary, there is no sign
problem with the new Pfaffian formula because there is no square root operation
in the formula.

7 Conclusion

A new formula was derived by Robledo for the calculation of the norm overlap
kernel, with help of the Fermion coherent state and the Grassmann numbers.
The result is expressed in terms of the Pfaffian. I have added a modification
coming from the normalization to complete the formula. The sign problem can
be avoided with the new Pfaffian formula, but there can be a need for a careful
numerical treatment to avoid errors in the evaluation of the norm overlap kernel
with the Pfaffian formula.
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