
NUCLEAR THEORY, Vol. 30 (2011)
eds. A. Georgieva, N. Minkov, Heron Press, Sofia

Quantum Inverse Scattering Problem for
Coupled Channels at Fixed Energy

W. Scheid1, B. Apagyi2

1Institut für Theoretische Physik der Justus-Liebig-Universität, 35392 Giessen,
Germany

2Institute of Physics, Department of Theoretical Physics, Budapest University of
Technology and Economics, 1521 Budapest, Hungary

Abstract. In this short contribution we discuss certain aspects of the inverse
scattering problem for coupled channels at fixed energy. The solution of the in-
verse problem means the calculation of the coupling potentials from the knowl-
edge of the S-matrix obtained from nuclear reactions. We extend the modified
Newton-Sabatier method known from the inverse problem of elastic scattering
at fixed energy to the case of coupled channels.

1 Introduction

The calculation of potentials and coupling potentials from the phase shifts and
from the S-matrix is denoted as the quantum inverse scattering problem. This
procedure leads from the measured cross sections in nuclear physics or other
fields in physics to the interaction potentials which are causally responsible for
the results of scattering experiments. One distinguishes quantum inverse scat-
tering problems at fixed angular momentum (the phase shifts or the S-matrix
are functions of the incident energy) and at fixed energy (the phase shifts or S-
matrix are functions of the quantum number of angular momentum). Usually
only elastic potentials resulting from phase shifts are studied and various meth-
ods were developed for solving the elastic inverse scattering problem e.g.at fixed
energy: the Newton-Sabatier method [1], the Bargmann method [2], the Ramm
method [3], the finite difference method [4], the Cox-Thompson method [5, 6].

Inelastic scattering is a coupled channel problem. An example for nuclear
inelastic scattering is the scattering of 12C on 12C with the excitation of the states
of 12C. The starting point for the inversion of the coupled channel problem is the
asymptotic wave function depending on the S-matrix. Here we want to review
the solving of the inverse scattering problem for coupled channels at fixed energy
within the modified Newton-Sabatier method for special cases of the coupling
potentials. The general case of coupling potentials is yet waiting for a solution.
The described methods are explained in detail in Ref. [7]. An approximate, but
more practical method was found within the method of Ramm by using the first
Born approximation [3, 8].
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In Section 2 we explain the coupled channel equations, in Section 3 we intro-
duce the modified Newton-Sabatier method and discuss transparent potentials,
the special case that the interaction has a monopole character, and the interac-
tion potential in the limes that the quantum number of the angular momentum
approaches infinity. Finally, Section 4 gives the Conclusion.

2 Coupled Channel Equations

We introduce the relative coordinate r between the nuclei and a set of intrinsic
coordinates ξ for both nuclei. The Hamitonian of the system consists of the
kinetic energy of the relative motion, T̂ (r), of the intrinsic Hamiltonian, ĥ(ξ),
and the interaction energy, Ŵ (r, ξ),

Ĥ(r, ξ) = T̂ (r) + ĥ(ξ) + Ŵ (r, ξ). (1)

For the interaction energy we use a multipole expansion

Ŵ (r, ξ) =
∞∑

λ=0

λ∑
μ=−λ

Qλμ(r, ξ)Y ∗
λμ(Ω) (2)

with only integer values of λ inculding the zero. The multipole momentsQλμ(r, ξ)
describe the coupling between the relative and intrinsic motions. We do not con-
sider nonlocal couplings and couplings to the spin degree of freedom of the
nucleons. The intrinsic Hamiltonian ĥ(ξ) has the eigenfunctions χνJM (ξ) and
eigenvalues ενJ :

ĥ(ξ)χνJM (ξ) = ενJχνJM (ξ), (3)

where the quantum numbers ν characterize the intrinsic states, the quantum
numbers J and M belong to the intrinsic angular momenta. Let us expand the
eigenfunctions of (1) to the energy E and quantum number I of total angular
momentum as follows:

ΨI
0(r, ξ) =

∑
νJ

I+J∑
�=|I−J|

[
i�Y�(Ω) ⊗ χνJ(ξ)

]I
0
RI

�νJ,n(r)/r

=
∑
νJ

∑
�m

i�(�mJ −m|I0)Y�m(Ω)χνJ−m(ξ)RI
�νJ,n(r)/r. (4)

Then after projecting with the spherical harmonics and the intrinsic wave func-
tions we obtain the coupled equations for the radial functions(

− �
2

2μ
d2

dr2
+
�α(�α + 1)�2

2μr2
+ εα − E

)
RI

αn(r)

= −
∑

β

∑
λ

CλI
αβv

λ
ναJα,νβJβ

(r)RI
βn(r). (5)
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Here, we introduced a set of quantum numbers α = {�α, να, Jα, εα} to charac-
terize the channels for fixed I . The coupling potentials are given by the product
of the coefficients

CλI
αβ = i�β−�α

(−1)Jα+I+λ

√
4π

√
(2�α + 1)(2λ+ 1)(2�β + 1)

×
(
�α λ �β
0 0 0

){
�α λ �β
Jβ I Jα

}
, (6)

with the reduced matrix elements

vλ
ναJα,νβJβ

(r) = 〈χναJα(ξ)||Qλ(r, ξ)||χνβJβ
(ξ)〉. (7)

For the solution of the inverse problem we need the condition that the coupling
potentials vanish for large r-values, i.e. r > a, with exemption of a Coulomb-
potential which can be quite easily taken into account (see Ref. [9]). The radial
wave function can be written for r > a with the S-matrix determined by the
various differential cross sections:

RI
αβ(r > a)/r =

∑
γ

Aαγ

√
kγkβ

2

(
(SI

γβ + δI
γβ)j�γ (kγr)

+ i(SI
γβ − δI

γβ)n�γ (kγr)
)
, (8)

where kγ =
√

2μ(E − εγ)/�2 and δI
γβ = δ�γ�β

δJγJβ
Δ(�γJγI)Δ(�βJβI).

3 Newton-Sabatier Method for Multipole Coupling

We discuss the modified Newton-Sabatier method. First we write the coupled
equations in a simpler form∑

β

DV I
αβ (r)RI

βn(r) = �α(�α + 1)RI
αn(r) (9)

with

DV I
αβ (r) = r2

2μ
�2

{[
�

2

2μ
d2

dr2
+ E − εα

]
δI
αβ − V I

αβ(r)
}

(10)

and
V I

αβ(r) =
∑

λ

CλI
αβv

λ
ναJα,νβJβ

(r). (11)

In a similar way we define a set of analogous coupled differential equations for
the reference wave functions R0I

αn(r) with an arbitrary chosen reference poten-
tial matrix V 0I

αβ(r) (= V 0I
βα(r)) :∑

β

DV 0I
αβ (r)R0I

βn(r) = �α(�α + 1)R0I
αn(r). (12)
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The Newton-Sabatier method introduces a kernel function which transforms
from the wave functions R0I

αn(r) to the wave functions RI
αn(r). This trans-

formation is named Povzner-Levitan representation (for details see Ref. [1]):

RI
αn(r) = R0I

αn(r) −
∑

β

∫ r

0

KV IV 0II
αβ (r, r′)R0I

βn(r′)
dr′

r′2
, (13)

where the elementsKV IV 0II
αβ (r, r′) of an integral kernel matrix appear. If we in-

sert the transformation (13) into the coupled equations (12) we obtain a coupled
system of equations:

0 =
∑

β

r2
2μ
�2

{
V I

αβ(r) − V 0I
αβ(r) +

2
r

�
2

2μ
d

dr

[
KV IV 0II

αβ (r, r)
r

]}
R0I

βn(r)

+
∑
β,γ

∫ r

0

{
DV I

αβ (r)KV IV 0II
βγ (r, r′) −DV 0I

γβ (r′)KV IV 0II
αβ (r, r′)

}
R0I

γn(r′)
dr′

r′2

+
∑

γ

∫ r

0

KV IV 0II
αγ (r, r′)(�γ (�γ + 1) − �α(�α + 1))R0I

γn(r′)
dr′

r′2
. (14)

Here we assumed

KV IV 0II
αβ (r = 0, r′) = KV IV 0II

αβ (r, r′ = 0) = 0. (15)

From equation (14) the Newton-Sabatier method results. For that we assume
that the kernel matrix fulfills the equations∑

β

(
DV I

αβ (r) − �α(�α + 1)δI
αβ

)
KV IV 0II

βγ (r, r′)

=
∑

β

(
DV 0I

γβ (r′) − �γ(�γ + 1)δI
γβ

)
KV IV 0II

αβ (r, r′). (16)

Then the coupling potential can be calculated as follows

V I
αβ(r) = V 0I

αβ (r) − 2
r

�
2

2μ
d

dr

[
KV IV 0II

αβ (r, r)
r

]
. (17)

The inversion method means a search for a suitable expansion of the kernel ma-
trix with some first unknown coefficients. The kernel matrix has to fulfill (16).
Then the expansion coefficients are determined by using the wave functions in
the asymptotic region depending on the S-matrix. After that the wave functions
and the kernel matrix are continued into the interaction region r < a and finally,
the potential matrix is calculated with (17).
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3.1 Transparent Potentials

A possible expansion of the kernel matrix with the coefficients cInn′ is the fol-
lowing which fulfills (16)

KV IV 0II
αβ (r, r′) =

∑
n,n′

cInn′RI
αn(r)R0I

βn′ (r′). (18)

This kernel is inserted in the Povzner-Levitan representation

RI
αn(r) = R0I

αn(r) −
∑
n′n′′

RI
αn′(r)cIn′n′′LI

n′′n(r) (19)

with

LI
n′′n(r) =

∑
β

∫ r

0

R0I
βn′′(r′)R0I

βn(r′)
dr′

r′2
. (20)

The kernel matrix leads to transparent potentials. This means potentials which
are different from zero but with a S-matrix S = 1. To recognize this fact we
set V 0I

αβ(r) = 0 and R0I
αn(r)/r =

√
kαj�α(I)(kαr)δI

αn. Then (20) can be easily
calculated:

LI
n′′n(r) = δI

n′′n

∫ knr

0

j2�n(I)(x)dx, (21)

where the value of �n depends on I and the intrinsic state. The integral is asymp-
totically finite:

LI
n′′n(r → ∞) = δI

n′′n
1

2�n + 1
π

2
. (22)

With the matrix LI
n′′n(r) we obtain a linear system of equations for the wave

functionsRI
αn: ∑

n′
RI

αn′(r)Mn′n(r)/r =
√
kαj�α(I)(kαr)δI

αn (23)

with

Mn′n(r) = δI
n′n + cIn′n

∫ knr

0

j2�n(I)(x)dx. (24)

The solution of (23) is

RI
αn(r)/r =

√
kαj�α(I)(kαr)M−1

αn (r). (25)

For r → ∞ the matricesM andM−1 do not depend on r. Then the S-matrix of
the wave functions is S = 1 which means that the potential matrix derived with
the kernel matrix (18) is transparent independent of the set of coefficients cInn′ .
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3.2 Monopole Coupling Potentials

As a first application of the method we consider the case that the potential inter-
action does not depend on the direction of the relative coordinate r, but only on
the internuclear distance r besides the dependence on the internal coordinates ξ.
Then the interaction matrix can not transfer angular momentum from the relative
motion to the intrinsic states. It consists only of a monopole term λ = 0 and is
independent of I and �:

V I
αβ(r) =Vαβ(r)

=
1√
4π

1√
2Jα + 1

〈χναJα ||Q0(r, ξ)||χνβJβ
〉. (26)

Only channels are coupled which have the same quantum numbers I , �α and Jα.
The differential operators DV I

αβ (r) and DV 0I
αβ (r) are independent of I .

DV I
αβ (r) = DV

αβ(r), DV 0I
αβ (r) = DV 0

αβ (r). (27)

In that case a kernel which fulfills equations (16) can be written with an addi-
tional sum over I

KV V 0

αβ (r, r′) =
∑

n,n′,I

cInn′RI
αn(r)R0I

βn′ (r′) (28)

with the yet unknown coefficients cInn′ which are determined from the asymp-
totic wave functions containing the S-matrix. This procedure has already been
tested and found to work quite well (see Refs. [10, 11]).

3.3 Interaction Potential for Very Large Angular Momenta

For large values of I we can show that the interaction matrix (11) is independent
of I . Since the coefficients CλI

αβ in V I
αβ contain the quantum number I , we

consider the expression
Cλ

αβ = lim
I→∞

CλI
αβ . (29)

We introduce the difference sα between the quantum numbers I and �α, defined
as sα = I − �α. Then the following formulas for large values of I(

I − sα λ I − sβ

0 0 0

)
≈ (−1)(2I+λ−sα−sβ)/2

(1
2

)λ 1√
2I

× ((sα − sβ + λ)!(sβ − sα + λ)!)1/2(
sα − sβ + λ

2

)
!
(
sβ − sα + λ

2

)
!
, (30)

{
I − sα λ I − sβ

Jβ I Jα

}
≈ (−1)Jα+Jβ+λ

√
2I

(
Jβ λ Jα

sβ sα − sβ −sα

)
(31)

16



Quantum Inverse Scattering Problem for Coupled Channels at Fixed Energy

lead to the coefficients

Cλ
αβ = isα−sβ (−1)(2Jβ+λ−sα−sβ)/2

(1
2

)λ ((sα−sβ+λ)!(sβ−sα+λ)!)1/2(sα−sβ+λ
2

)
!
(sβ−sα+λ

2

)
!

× 1√
4π

√
2λ+ 1

(
Jβ λ Jα

sβ sα − sβ −sα

)
. (32)

The inverse problem with angular momentum-independent interactions with co-
efficients Cλ

αβ can be solved similarly to the method described in Section 3.2.
In that case one can use the expansion (28) for the kernel matrix including the
summation over I if one replaces �α(�α + 1) by I(I + 1) in (9) and (12) (a
similar approximation is used for the coefficients Cλ

αβ ). Then the kernel matrix
expansion (28) again fulfills the necessary equations (16).

In principle, one now has the possibility to solve the inverse scattering prob-
lem in the case of a general Hamiltonian (1) at fixed energy. The procedure is
the following: Ramm proved that the potential in elastic scattering is determined
already by an infinite subset of phase shifts at a fixed energy [12]. Let us assume
that the same statement is also true for coupled channels and that an infinite sub-
set of the scattering matrix already can determine the interaction matrix. Hence,
we can choose an infinite subset of theS-matrix with quantum numbers I of total
angular momenta in the interval Imin ≤ I ≤ Imax → ∞. If the condition that
the absolute value of the difference |CλImin

αβ − Cλ
αβ | is smaller than an arbitrary

small ε is fulfilled, we can solve the inverse problem with the subset of the S-
matrix with I ≥ Imin and with the coefficients Cλ

αβ using the expansion of the
kernel matrix and the method described in Section 3.2. However, this method is
not practicable since the S-matrix elements can not be extracted for high angular
momenta from the experimental differential cross section, especially in reactions
of nuclear physics.

4 Conclusion

A more practical, but approximate procedure to solve the inverse scattering prob-
lem inside the Newton-Sabatier method starts with the ansatz for the kernel ma-
trix (see Ref. [9])

KV IV 0II
αβ (r, r′) =

∑
λ

CλI
αβk

λ
ναJα,νβJβ

(r, r′) (33)

with the coupling potentials obtained as

vλ
ναJα,νβJβ

(r) = v0λ
ναJα,νβJβ

(r) − 2
r

�
2

2μ
d

dr

[
kλ

ναJα,νβJβ
(r, r)

r

]
. (34)
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The kernels kλ
ναJα,νβJβ

(r, r′) should not depend on I and can be expanded in a
sum over I and the wave functions

kλ
ναJα,νβJβ

(r, r′) =
∑

n,n′,I

cλI
nn′RI

αn(r)R0I
βn′ (r′). (35)

Then, the method of Section 3.2 can again be applied to calculate the interaction
matrix. However, the essential disadvantage of this procedure is that the kernel
(33) does not fulfill the necessary equations (16) also if the coefficients CλI

αβ

are independent of I , and the centrifugal term in (5) is approximated by I(I +
1)�2/(2μr2).

Another approximate procedure is based on the first Born approximation (see
Ref. [8]) and needs at least only one line of the S-matrix as initial data. It works
under the conditions (|V | is a mean value of the interaction):

μ|V |a2

�2

√
ka� 1 if ka < 1, (36)

μ|V |a
�2k

� 1 if ka > 1. (37)

The starting point are integral equations for the wave functions derived from the
coupled differential equations (U I

αβ = (2μ/�2)V I
αβ)

RI
αn(r)/r = R0I

αn(r)/r − ı

∫ a

0

r′2dr′kαj�α(kαr<)

× (j�α(kαr>) + ın�α(kαr>))
∑

β

U I
αβ(r′)RI

βn(r′)/r′. (38)

If RI
βn(r′) is replaced by R0I

βn(r′) in first Born approximation, a relation be-
tween the moments of the potential matrix and S-matrix can be derived [8]

SI
αβ − δI

αβ = −2ı
√
kαkβ

∫ a

0

r′2dr′j�α(kαr
′)U I

αβ(r′)j�β
(kβr

′). (39)

From the moments of theS-matrix one gets the potential matrix by the method of
Bachus and Gilbert [8]. In the case that the first Born approximation works (see
equations (36) and (37)) the test calculations show good results [8]. In first Born
approximation the matrix elements SI

αβ with fixed values of α and β already
give the potential matrix elements vλ

ναJανβJβ
(r). This is a great advantage for

the inversion since most experiments provide differential cross sections which
only yield parts of the complete S-matrix.

Up to know the presented methods were not yet applied to realistic cases.
We plan to use the inversion procedures for examples of heavy ion scattering,
e.g.for the study of the effects of nuclear molecular states in the scattering of
12C on 12C. Such a work has as necessary condition that trustworthy S-matrices
can be extracted from the experimental data. But that is another severe problem.
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