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CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium

2Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of
Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

3Institute of Solid State Physics, Bulgarian Academy of Sciences,
72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

Abstract. Using the latest experimental atomic mass data complemented with
a microscopic atomic mass model, we have determined the equilibrium struc-
ture of the outer crust of cold non-accreting neutron stars endowed with strong
magnetic fields. The equation of state is found to be markedly affected by the
Landau quantization of electron motion. In particular, a strongly quantizing
magnetic field not only changes the crust composition but also makes the crust
more incompressible.

1 Introduction

Neutron stars are among the most strongly magnetized objects in the Universe.
Radio pulsars are endowed with typical magnetic fields of order 1012 G. Mag-
netic fields up to 2 × 1015 G have been estimated in soft-gamma repeaters and
anomalous X-ray pulsars [1]. Currently about 20 such objects have been de-
tected [2]. Even stronger fields might exist in the interior of these stars. Accord-
ing to the virial theorem, the upper limit on the neutron star magnetic fields is
about 1018 G [3]. Such fields are believed to be already present in newly-born
neutron stars (see e.g.Ref. [4] and references therein) and could therefore alter
their chemical evolution. In this paper, we study the impact of strong magnetic
fields on the equilibrium composition of the outer crust of cold non-accreting
neutron stars along the lines of Ref. [3] by using recent experimental atomic
mass data complemented with a theoretical mass table based on the Hartree-
Fock-Bogoliubov method [5]. In Section 2, we present the microscopic model
used to describe the outer crust of a strongly magnetized neutron star. Results
are discussed in Section 3.
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2 Microscopic Model of Magnetized Neutron Star Crusts

In the model we adopt here [3], the neutron-star crust is assumed to be made
of cold catalyzed matter, i.e. matter in its ground state at zero temperature and
in a uniform magnetic field. The atoms are supposed to be fully ionised and
arranged in a body centered cubic lattice. We have determined the equilibrium
composition of each layer of the outer crust at a given pressure P by minimising
the Gibbs free energy per nucleon

g =
E + P

n̄
(1)

where E is the average energy density and n̄ the average nucleon number density.
Assuming that each layer of the outer crust contains only one nuclear species
with proton number Z and atomic number A, the energy density can be ex-
pressed as

E = nNM ′(Z,A) + Ee + EL (2)

where nN = n̄/A is the number density of nuclei, M ′(Z,A) their mass (includ-
ing the rest mass of nucleons and Z electrons), Ee the energy density of electrons
(without rest mass energy) and EL the lattice energy density. The nuclear mass
M ′(Z,A) can be obtained from the atomic mass M(Z,A) after substracting out
the binding energy of the atomic electrons

M ′(A,Z) = M(A,Z) + 1.44381× 10−5 Z2.39 + 1.55468× 10−12 Z5.35 (3)

where both masses are expressed in units of MeV. As in Ref. [3], we will ig-
nore the effects of the magnetic field on nuclear masses. This approximation is
reasonable unless the magnetic field exceeds ∼ 1017 G [16]. In Ref. [3], the
authors used the experimental atomic masses from Ref. [7] supplemented with
by the mass model of Ref. [8]. In this paper, we have made use of the most
recent experimental atomic mass data from a preliminary unpublished version
of an updated Atomic Mass Evaluation (AME) [9]. For the masses that have
not yet been measured, we have employed the microscopic nuclear mass model
HFB-21 of Ref. [10] based on the Hartree-Fock-Bogoliubov method with a gen-
eralized Skyrme effective nucleon-nucleon interaction [11] supplemented with
a microscopic contact pairing interaction [12]. The parameters of the Skyrme
interaction were fitted to the 2149 measured masses of nuclei with N and Z ≥
8 given in the 2003 AME [13] with a rms deviation as low as 0.58 MeV. The
parameters were simultaneously constrained to reproduce the zero-temperature
equation of state of homogeneous neutron matter, as determined by many-body
calculations with realistic two- and three-nucleon forces [14], from very low
densities up to the maximum density found in stable neutron stars. With this
constraint, the model is very well-suited for describing the highly-neutron rich
nuclei found in the outer crust of a neutron star, as shown in Figure 1. This
model can also be reliably extrapolated to the deeper regions of a neutron star
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Figure 1. Differences between experimental and theoretical nuclear masses as a function
of neutron number. Experimental masses are taken from the 2003 AME [13], whereas
theoretical masses have been obtained from the model HFB-21 of Ref. [10].

where nuclei dissolve into an homogeneous mixture of nucleons and leptons.
We have ensured that no spurious instabilities occur in nuclear matter for all
densities prevailing in the interior of neutron stars [15].

The electrons are treated as a relativistic Fermi gas. In the presence of a
strong magnetic field, the electron motion perpendicular to the field is quantized
into Landau levels. Neglecting the small anomalous magnetic moment of elec-
trons, the energies of these Landau levels (which were actually first found by
Rabi as early as 1928 [17]) are given by

eν =
√

c2p2
z + m2

ec
4(1 + 2νB�) (4)

where ν is any non-negative integer, pz is the component of the momentum along
the field, and B� = B/Bc is the strength of the magnetic field B measured in
units of the critical field

Bc =
m2

ec
3

e�
� 4.4 × 1013 G . (5)

In the following we will assume that only the lowest Landau level ν = 0 is filled.
This approximation is actually exact provided the electron number density ne

satisfies the inequality

ne <
1√

2π2a3
m

(6)

where am =
√

�c/eB. Since the average nucleon density is given by n̄ =
(A/Z)ne, Eq. (3) can be equivalently expressed as n̄ < n̄B with

n̄B � 1.24 × 10−9 A

Z
B

3/2
� fm−3 . (7)
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Introducing the dimensionless parameter

x =
π2λ3

ene

B�
(8)

where λe is the electron Compton wavelength, the electron energy density is
given by (see e.g.Ref. [3] and references therein)

Ee =
B�mec

2

(2π)2λ3
e

[
x
√

1 + x2 + log{x +
√

1 + x2}
]

. (9)

According to the Bohr-van Leeuwen theorem [18], the lattice energy density is
not affected by the magnetic field. For point-like ions in a body centered cubic
lattice, the lattice energy density is approximately given by [19]

EL = −1.44423Z2/3e2n4/3
e . (10)

The pressure P can be decomposed into an electronic part Pe and a lattice
part PL,

P = Pe + PL , (11)

where

Pe =
B�mec

2

(2π)2λ3
e

[
x
√

1 + x2 − log{x +
√

1 + x2}
]

, (12)

and

PL =
1
3
EL (13)

respectively.

3 Equilibrium composition and equation of state

We have calculated the composition of the outer crust of a magnetized neutron
star as follows. For any given pressure P and for all proton numbers 1 ≤ Z ≤
110 and neutron numbers 1 ≤ N ≤ 250 (more than 8000 nuclei), we have
calculated the Gibbs free energy per nucleon g from Eq. (1) by first extracting
the electron density ne from Eqs. (11),(12) and (13) and second by using Eqs. (9)
and (10). The equilibrium composition is that which yields the lowest value of g.
We have repeated the calculations by increasing the pressure from P = 10−11

MeV fm−3 to P = Pdrip for which g equals mnc2 where mn is the neutron
mass. At higher pressures, neutrons start to drip out of nuclei thus delimiting
the boundary between the outer crust and the inner crust of a neutron star. For
B� < 1.3×103, we have found that electrons start to fill the Landau level ν = 1
at a pressure PB < Pdrip. For this reason, we have chosen B� = 1500 so that
only the lowest Landau level is occupied in any region of the outer crust. Results
are summarized in Table 1. For comparison, we also show the composition of
the outer crust in the absence of magnetic field using the well-known expressions
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of the energy and pressure of a relativistic Fermi gas instead of Eqs. (9) and (10)
respectively. Note that our results are slightly different from those given in Table
III of Ref. [6] because of our neglect of electron exchange as well as other small
corrections to g that were included in Ref. [6]. Our results for B� = 0 also differ
from those obtained previously in Ref. [3] because of the use of more recent
experimental and theoretical atomic mass data. In particular, the elements 124Ru
and 118Kr that were found in Ref. [3] are now absent, whereas 79Cu, 80Ni, 124Sr
and 121Y are present. Using the latest experimental mass tables the outer crust
is found to contain 12 nuclides with experimentally measured masses vs.only 6
in the calculations of Ref. [3]. In a strong magnetic field, the maximum density
at which each nuclide is present in the crust increases. We have also found that
the equilibrium composition is significantly changed. In particular, the nickel
isotopes 66Ni, 78Ni and 80Ni disappear whereas the elements 88Sr, 128Pd and
126Ru are now present.

Table 1. Composition of the outer crust of cold non-accreting neutron stars

Maximum density n̄, fm−3

Nuclide B� = 0 B� = 1500
56Fe 4.93 × 10−9 3.84 × 10−6

62Ni 1.59 × 10−7 1.69 × 10−5

58Fe 1.65 × 10−7 −
64Ni 7.99 × 10−7 1.84 × 10−5

66Ni 9.22 × 10−7 −
88Sr − 2.43 × 10−5

86Kr 1.86 × 10−6 4.02 × 10−5

84Se 6.79 × 10−6 5.95 × 10−5

82Ge 1.67 × 10−5 7.96 × 10−5

80Zn 3.18 × 10−5 9.95 × 10−5

79Cu 4.35 × 10−5 1.06 × 10−4

78Ni 5.42 × 10−5 −
80Ni 7.99 × 10−5 −
128Pd − 1.23 × 10−4

126Ru − 1.37 × 10−4

124Mo 1.23 × 10−4 1.63 × 10−4

122Zr 1.48 × 10−4 1.76 × 10−4

121Y 1.74 × 10−4 1.88 × 10−4

120Sr 1.95 × 10−4 1.97 × 10−4

122Sr 2.39 × 10−4 2.13 × 10−4

124Sr 2.56 × 10−4 2.16 × 10−4

As can be seen in Figure 2, the quantization of electron motion due to the
strong magnetic field leads to a drop of pressure at densities n̄ � n̄B . This
figure also shows that the surface layers of a strongly magnetized neutron star
are almost incompressible over a wide range of pressures. In the upper layers of
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Figure 2. Equation of state of the outer crust of cold non-accreting neutron stars in the
absence of a magnetic field (continuous line) and in a uniform magnetic field with B� =
1500 (dashed line).

the crust x � 1 and the electron pressure is approximately given by

Pe � 1
3
mec

2n3
e

[
2π2λ3

e

B�

]2

. (14)

Substituting Eq. (14) into Eq.(11) with P = 0 using Eq. (13) yields the average
density at the surface of a magnetized neutron star

n̄s � As

Zs

[
1.44423Z

2/3
s e2

mec2

(
B�

2π2λ3
e

)]3/5

, (15)

with Zs and As the proton number and the charge number of the equilibrium
nuclide at the surface. Assuming that the surface of a neutron star is made of
iron with Zs = 26 and As = 56 leads to

n̄s � 2.501 × 10−10B
6/5
� fm−3 . (16)

This simple formula shows that the stronger the magnetic field is, the higher is
the surface density. It should be stressed however that Eq. (16) provides only
a rough estimate of the surface density. The present model is not suited for
describing the surface layers of a neutron star because of the nonuniformity of
the electron gas [20].

4 Conclusion

Using the most recent experimental atomic mass data complemented with the
latest Hartree-Fock-Bogoliubov mass model, we have computed the equilibrium

245



Zh.K. Stoyanov et al.

composition and the equation of state of the outer crust of cold non-accreting
neutron stars in the presence of strongly quantizing magnetic fields
B � m2

ec
3/(e�). The magnetic field changes the composition and increases

the maximum density at which each nuclide appears. This leads to a dramatic
drop of pressure in the surface layers of the star. Moreover the magnetic field
makes the crustal matter much more incompressible.
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