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Abstract. A collective model of nuclear quadrupole-octupole vibrations and
rotations, originally restricted to a coherent interplay between quadrupole and
octupole modes, is now developed for application beyond this restriction. The
eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in
the basis of the analytic solution obtained in the case of the coherent-mode as-
sumption. Within this scheme the yrast alternating parity band is constructed by
the lowest eigenvalues having the appropriate parity at given angular momen-
tum. This model scheme was applied to describe the alternating parity spectra of
several rare-earth nuclei: 150Nd, 152Sm, 154Gd and 156Dy. It was obtained that
the unrestricted model calculations (without coherent interplay) provide a better
description with the root-mean square (RMS) deviation being smaller than the
one in the analytic solution.

1 Introduction

The collective motion of atomic nuclei is mainly governed by the shape deforma-
tions and the interplay between different kinds of deformation degrees of free-
dom [1]. An important role is played by the quadrupole-octupole motion which
provides a specific structure of the spectrum, with the presence of alternating-
parity bands and split parity-doublet levels in even-even and odd-mass nuclei,
respectively [2]. A specific indication for the presence of quadrupole-octupole
collectivity is the observation of enhanced electric E1 and E3 transitions be-
tween levels with opposite parity. In even-even nuclei the negative-parity se-
quence is shifted up with respect to the positive parity sequence. This “parity
shift” effect is explained as the result of a tunneling of the system between the
two opposite orientations along the principal symmetry axis [3]- [5]. The mag-
nitude of the energy shift corresponds to the softness of the shape with respect to
the octupole deformation. Generally, one can classify the quadrupole-octupole
spectra of even-even nuclei in two groups corresponding to the motion of stiff
and soft reflection-asymmetric deformations. In the stiff regime of motion the
negative and positive parity sequences merge at certain angular momentum into
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a single rotation band called “octupole band”. Such kind of spectra are typi-
cally observed in the light actinide nuclei Rn, Ra and Th. In the soft regime
of quadrupole-octupole motion the opposite parity sequences remain well sepa-
rated from each other along the whole angular momentum region. Typical exam-
ples of such kind of spectra are observed in the heavier actinides U and Pu and
some rare-earth isotopes like Nd, Sm, Gd and Dy. Some model approaches were
specially developed to describe the soft quadrupole-octupole motion [6]- [8].

Especially in [8] Minkov et al. have applied a coherent quadrupole-octupole
motion (CQOM) model to the four nuclei 150Nd, 152Sm, 154Gd and 156Dy. This
model is described in more detail in the next section. As a result of a fitting
procedure applied to four model parameters for each nucleus, the yrast spectra
of these rare-earth even-even nuclei could be described with an accuracy of about
50 keV for the root mean square deviation of theory and experiment.

This model has the advantage to be completely solvable in an analytic way.
However, in order to reach this analytic solution certain correlations between
the parameters of the initial Hamiltonian are imposed. These additional corre-
lations, which have to hold, especially imply the same oscillation frequency for
the quadrupole and the octupole degree of freedom (ω = ω2 = ω3). As a conse-
quence, the energy potential, which enters the Schrödinger equation, is limited
to the case of having an ellipsoidal minimum with respect to the quadrupole
and octupole deformation variables β2 and β3. Therefore the application of this
model is restricted to a special class of solutions. On the other hand the unre-
stricted Hamiltonian allows the presence of more general shapes, providing the
possibility to describe more general properties of the collective motion.

The purpose of the present work is to develop the model beyond the coherent
case of equal oscillation frequencies, thereby allowing the model Hamiltonian
to unfold its full capability. It follows that the underlying task is to obtain a full
solution of the two-dimensional Schrödinger equation. This can only be done in
a numerical way. In the present work the problem is solved by diagonalizing the
Hamiltonian in the basis of the analytic wave functions obtained in the coherent
case [8]. As a result one obtains an yrast spectrum which depends on model
parameters. These are fitted to obtain the best agreement between theory and
experiment. It will be seen below that the quality of the model description could
be improved in comparison to the CQOM description for the considered nuclei.
In addition, the developed approach allows one to give a clearer physical inter-
pretation of the obtained model parameters, especially in relation to the shape of
the model potential.

2 Two-Dimensional Quadrupole-Octupole Model

2.1 General Hamiltonian

The starting point is a vibration-rotation Hamiltonian formulated in the collec-
tive axial quadrupole and octupole deformation variables β2 and β3 [8]
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where X(I) = 1
2 [d0 + I(I + 1)] for even-even nuclei. B2 and B3 are mass

parameters, C2 and C3 are stiffness parameters, d2 and d3 are moment of inertia
parameters and d0 determines the potential core at angular momentum I = 0.
The overall shape of the potential is governed by a quadratic growth for larger
deformations and a strongly repulsive potential centre.
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following closed formula [8]
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M 0(θ) is the Wigner rotation function and
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is the quadrupole-octupole vibration function. Here
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for the “angular” wavefunctions with either positive or negative parity.
For the quantum numbers n = 0, 1, 2, . . . and k = 1, 2, 3, . . . one chooses

the lowest possible values to describe the yrast spectra. This means one takes
always n = 0 and k = 1 for even angular momenta (positive parity) and k = 2
for odd angular momenta (negative parity).
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3 Diagonalization of the Unrestricted Hamiltonian

Usually the fastest method to solve the Schrödinger equation is the grid method
(finite differences). However, the diagonalization method is more efficient if an
appropriate basis is chosen. This is especially true if the Hamiltonian matrix
elements can be obtained in an analytic form. We use this advantage in the
present approach. Although the diagonalization is performed numerically, the
problem remains analytic in the mentioned sense. This guarantees a quite fast
solution and outperforms the method of finite differences in calculation time.

3.1 Choice of the Basis

The CQOM has a boundary condition which leads to a separation of the left
(β2 < 0) and right (β2 > 0) quadrupole-octupole deformation plane. The
CQOM model only uses the right half-plane with prolate shapes. The above
mentioned complete set of orthonormal eigenfunctions Φ(η, φ), eq. (5), of the
CQOM model provide a natural choice because they automatically take into ac-
count this boundary condition. Therefore we choose them as basis functions
for the solution in the case of the two-dimensional quadrupole-octupole model
(2DQOM) without coherence, i.e. allowing ω2 �= ω3.

3.2 Details of the Numeric Algorithm

As a first step a basis truncation is performed since the basis space is infinite-
dimensional. The quantum numbers n and k, at which the basis is truncated, are
determined by imposing a certain limit on the energy in the CQOM expression
eq. (3) for a given set of model parameters.

The basis functions are completely determined if the CQOM parameters b,
c and d0 are given. The values of these parameters should be chosen in an
appropriate way. A suitable choice of them can reduce the number of basis states
necessary for a certain precision to a minimum, i.e. the basis can be optimized.
Since the parameters B2, B3, C2, C3, d2, d3 and d0 can vary independently in
the 2DQOM, there are in principle two choices, namely a quadrupole and an
octupole one for b and c. For the parameter b one has for example

bquad =
2B2

�2d2
or boct =

2B3

�2d3
. (9)

We have then chosen the arithmetic mean b = (bquad + boct)/2 which means
that no degree of freedom is preferred and in case of coherence (bquad = boct)
the parameter is chosen as in the CQOM model. A similar choice was done for
the parameter c. The parameter d0 can simply be taken over from the CQOM
solution.

Then the integrals of the Hamiltonian matrix are calculated. As a first step,
the Hamiltonian (1) has to be transformed to the ellipsoidal coordinates, eq. (2),
see equation (11) in [8] for the kinetic part. The matrix elements depend on the
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parameters B2, B3, C2, C3, d2, d3 and d0 of this Hamiltonian. The integra-
tion is over the right half-plane only. The matrix elements for a fixed angular
momentum are given by

〈n′ k′|H |n k〉I =

=
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−π/2

∫ ∞

0
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where the parity of the angular functions ϕ±
k is fixed by the quantum number

k (odd or even). Since the integration is performed in the coordinates η and φ,
the Jacobian from the transformation (2), J(η) = d√

d2d3
η, appears in the matrix

elements (10). Then the integrations over the “radial” coordinate η are always
reduced to the following known analytic expression [13]∫ ∞

0
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which is fast evaluated. The φ-integrations only involve trigonometric functions
and are easily performed.

In order to obtain a two-dimensional matrix instead of the four component
tensor, eq. (10), the basis functions are relabelled into a list with only one in-
dex. For a fixed angular momentum I the resulting matrix is diagonalized and
we obtain the eigenvalues and eigenvectors. The corresponding physical state
from the yrast band is determined by the lowest eigenvalue whose eigenvec-
tor possesses the correct parity (−1)I . In this way the model spectrum is con-
structed. In the CQOM the yrast states are characterized by the quantum num-
bers (n, k) = (0, 1) for even I and (0, 2) for odd I . In the 2DQOM n and k are
no longer good quantum numbers. Then the model eigenfunctions are character-
ized by their decomposition coefficients in the basis states. It was found that for
a given eigenfunction the main decomposition component still corresponds to
the quantum numbers of the respective state in the CQOM model. Other higher
lying basis states are also mixed into the final eigenstate to a certain amount.

4 Application to some Rare-Earth Nuclei

Once the diagonalizations have been performed for all angular momenta, one
obtains an yrast spectrum and is able to define a function σRMS which gives
the root mean square deviation from the experimental levels. Then the model
parameters B2, B3, C2, C3, d2, d3 and d0 can be adjusted so as to provide the
best description of experimental data. For this minimization procedure a first
guess must be known. For this reason we take the known CQOM parameters ω
and b (for the choice of c see next paragraph) and calculate a set of parameters
B2, B3, C2, C3, d2 and d3 which corresponds to the same solution. (d0 can
simply be taken over from the CQOM solution.)
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Table 1. Theoretical alternating parity spectra with energy staggering obtained by
CQOM [8] (first column), present 2DQOM (second column) and experimental levels
for 150Nd [9], 152Sm [10], 154Gd [11] and 156Dy [12].

Iπ CQOM 2DQOM Exp Iπ CQOM 2DQOM Exp
150Nd 152Sm

1− 777.30 830.33 852.94 1− 853.73 917.93 963.354
2+ 112.46 109.67 130.21 2+ 112.23 103.58 121.782
3− 921.50 945.62 934.86 3− 994.59 1037.02 1041.114
4+ 358.23 353.48 381.45 4+ 357.52 336.44 366.479
5− 1167.13 1147.55 1129.0 5− 1235.09 1246.37 1221.48
6+ 707.63 705.61 720.4 6+ 706.33 680.19 706.88
7− 1495.94 1426.88 1432.6 7− 1557.94 1537.95 1505.61
8+ 1131.57 1135.83 1129.7 8+ 1129.65 1112.53 1125.35
9− 1889.64 1771.67 — 9− 1945.59 1901.56 1879.11
10+ 1607.52 1617.80 1599 10+ 1604.99 1612.06 1609.23
11− 2332.69 2169.37 — 11− 2382.93 2326.22 2326.96
12+ 2119.74 2131.90 2119 12+ 2116.62 2160.82 2148.51
13− 2812.95 2608.46 — 13− 2857.99 2801.37 2833.25
14+ 2657.61 2664.64 2682.5 14+ 2653.93 2744.76 2736.01

154Gd 156Dy

1− 1035.45 1109.72 1241.271 1− 1142.05 1207.65 1293.20
2+ 114.21 103.23 123.070 2+ 128.52 119.78 137.77
3− 1175.71 1230.75 1251.625 3− 1285.26 1336.46 1368.36
4+ 365.10 335.44 370.995 4+ 404.34 382.37 404.19
5− 1416.66 1442.82 1404.069 5− 1529.41 1559.21 1526.28
6+ 724.23 678.97 717.655 6+ 787.67 757.08 770.44
7− 1742.56 1737.17 1674.10 7− 1856.55 1863.01 1809.97
8+ 1162.85 1112.68 1144.43 8+ 1243.34 1213.05 1215.61
9− 2136.90 2103.26 2040.50 9− 2248.63 2233.70 2186.58
10+ 1657.97 1616.31 1637.04 10+ 1746.71 1725.72 1725.02
11− 2584.87 2530.18 2482.28 11− 2690.23 2657.99 2636.55
12+ 2193.06 2172.64 2184.67 12+ 2281.93 2277.46 2285.88
13− 3074.38 3007.66 2981.27 13− 3169.27 3124.51 3103.60
14+ 2756.75 2767.92 2777.30 14+ 2838.97 2856.07 2887.82
15− 3596.01 3526.59 3519.07 15− 3676.68 3624.05 3596.40
16+ 3341.28 3391.55 3404.44 16+ 3411.39 3453.12 3498.88
17− 4142.60 4079.24 4102.0 17− 4205.78 4149.33 4157.80
18+ 3941.28 4035.45 4016.1 18+ 3994.98 4062.66 4025.80
19− 4708.78 4659.21 4735.5 19− 4751.66 4694.73 4771.20
20+ 4553.01 4693.55 4646.3 20+ 4586.87 4680.43 4635.60

This set of parameters is not uniquely fixed since there are many CQOM
potentials which all lead to the same energies. This is especially true for the
present treatment of yrast spectra only. The parameter c enters only in the wave-
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functions and is irrelevant for the energies. Its value governs the overall size
of the parameters B2, B3, C2, C3, d2 and d3 and can therefore be chosen to
provide a scaling of the parameters to an order of magnitude which is physically
reasonable. Secondly, there are many choices for the ellipsoidal minimum which
differ in excentricity. This can be used to reach a certain ratio of quadrupole to
octupole parameters. We chose the parameter c as 100 and fix the excentric-
ity in such a way that the minimum becomes a circle which implies B2 = B3,
C2 = C3 and d2 = d3.

All calculations were done with 20 basis states. The truncation of the basis
was done as described in section 3.2. It was verified that at the minimum position
the resulting energy levels only vary insignificantly if more states are added to
the basis, e.g. if 30 states are taken into consideration each level differs from the
given levels in Table 1 by less than about 1 keV.

Table 2. Parameters of the fits obtained for 150Nd, 152Sm, 154Gd and 156Dy. The param-
eters B2, B3 are given in units of �

2/MeV, C2 and C3 are given in units of MeV, d2 and
d3 are given in �

2·MeV−1 and d0 is given in �
2.

Nucleus B2 B3 C2 C3 d2 d3 d0

150Nd 8.936 112.581 177.719 122.471 1205.101 1406.955 30.577
152Sm 7.247 84.032 190.110 154.241 1052.186 1215.422 64.251
154Gd 16.155 57.355 218.904 168.194 1210.526 1341.800 79.806
156Dy 36.249 59.798 170.942 149.937 1311.362 1550.467 39.230

The model approach was applied to describe the yrast alternating parity spec-
tra of the nuclei 150Nd, 152Sm, 154Gd and 156Dy. In Table 1 the model levels
obtained in the present calculations are compared to the experimental levels and
to the levels obtained in the coherent case. The resulting minimum parameters
are given in Table 2. A graphical comparison of the energy levels together with
root mean square values can be seen in Figure 1.

5 Discussion and outlook

The results in Table 1 and the comparison of energy levels in Figure 1 show
that the 2DQOM leads to a better description of the yrast spectra of all four
nuclei under consideration. This is in agreement with our expectation since
the numerical solution is a generalization and contains the analytical solution
as a special case. The restriction to equal frequencies ω2 and ω3 is equivalent
to certain relations between the model parameters (mass-, stiffness- and inertia
parameters) which must hold and which lead to the four CQOM parameters ω,
b, d0 and c. The 2DQOM does not have these limitations and therefore consists
of the seven parameters B2, B3, C2, C3, d2, d3 and d0 which are all allowed to
vary freely. It is clear that a larger number of parameters should lead to a better
description.
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Figure 1. Theoretical levels obtained by CQOM [8] (th1), present 2DQOM (th2) and
experimental levels for 150Nd [9], 152Sm [10], 154Gd [11] and 156Dy [12].

As mentioned in the last section, there are many choices of the parameters
B2, B3, C2, C3, d2, d3 and d0 which lead to the same energy levels. Therefore
the model does not provide a unique potential shape. This freedom in the choice
of the parameters could be used to satisfy additional conditions, e.g. one could
demand a certain minimum position for the potential. In an extended ansatz
which also treats transition probabilities the wave functions become important
and the parameter c as well as the excentricity of the minimum can no longer be
chosen arbitrarily.

Concerning future improvements, the inclusion of transition probabilities
into the fitting procedure to describe them and the spectrum simultaneously is
therefore of high interest. Secondly, one could look not only for yrast states but
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also for higher lying states for which experimental data also exists. Thirdly, one
could extend the formalism also to even-odd nuclei. Work in these directions is
in progress.
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