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Abstract. We discuss the extension of standard quantum mean-field theories
in order to account for dissipative effects. We take examples from nuclear and
electronic dynamics. We show that many questions remain largely open, espe-
cially from the formal point of view.

Dissipation is an essential mechanism to understand dynamics, especially
beyond the linear domain, as soon as one is not accounting for all degrees of
freedom (which is the general case). Dissipation reflects the fact that a certain
amount of energy is transferred from the degrees of freedom chosen to describe
a system in the direction of neglected ones. This is usually accounted for in an
approximate manner, precisely because of the lack of a complete description of
the system under consideration. This also implies that the effect of this dissipa-
tion will be usually packed into simple gross quantities such as in particular a
temperature. Dissipative dynamics is thus intrinsically linked to thermalization.
Dissipation has been observed in most physical systems and the topic as such
thus covers a certainly too large field. We will restrict here the discussion to
finite systems as described by quantum mean-field. This covers typically nuclei
and clusters or molecules. Illustrative examples will then be taken from these
two fields.

1 Dissipation in Nuclei, Clusters and Molecules

The probably first hint of the appearance of temperature effects inside nuclei
goes back to the seminal paper of Bohr [1] where the impact of neutrons on
nuclei is discussed in a qualitative, but quite pertinent, manner. The argument
is illustrated in Figure 1 including both the excitation mechanism (ball picture)
and the ensuing relaxation of the system, in particular via nucleon emission. The
mechanism is qualitatively simple. The incoming neutron transfers (dissipates)
in a global manner its kinetic energy to the nucleus which gradually thermalizes.
The thus acquired finite temperature leads to neutron emission according to a
statistical process [2]. The study of “hot” nuclei has been widely performed
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Figure 1. Sketch of neutron impact on nucleus and resulting excitation/deexcitation of
the nucleus in terms of a nuclear temperature. From [1].

later on, especially in the 1980’s and 1990’s with help of heavy ions facilities, in
particular the ones delivering beam energies in the Fermi domain [3].

Temperature effects at the side of the electron clouds in clusters and molecules
is also a topic of intense investigations those days, especially with the develop-
ments of new light sources during the past two decades. As an illustration we
take the example of a C60 fullerene irradiated by an intense laser pulse [4]. The
laser ionizes the system and leads to a heating of the system. The emission tem-
perature is plotted in Figure 2 as a function of the fluence of the laser, namely
basically as a function of the total amount of deposited energy. It is interesting

Figure 2. Extracted temperatures from electrons emitted from irradiated C60 (open cir-
cles) and C70 (close squares) as a function of laser fluence. From [4].

208



Dissipation in Quantum Time-Dependent Mean Field

to note here the rather large temperatures attained, of order of 20% of the ion-
ization potential of the irradiated system. Such a fraction is similar to the typical
temperatures attained in nuclei, namely 20% of the Fermi energy.

2 Theory: Mean-Field and Beyond

The above examples have demonstrated the importance of dissipation and ther-
mal effects in finite quantum systems. We want now to briefly introduce the
typical mean-field theories used in these domains to describe the dynamics of
such systems. However, as is well known, pure mean-field is generally speak-
ing insufficient to account for observed dissipative features. The question of
extending the quantum mean-field by complementing it by dissipative features
is thus essential. Such extensions of the mean-field have been actively explored,
especially in the nuclear domain, as early as the late 1970’s [9]. However, up
to the best of knowledge, they do not exist yet. In turn, and because they are
reasonably justified in strongly dissipative situations, semi-classical approxima-
tions, on the basis of the Vlasov extension and its kinetic theory generalization,
have been extensively used over the years. We want here to briefly present these
approaches before discussing their validity.

2.1 Basic Scales and Constraints

The electronic and nuclear cases cover a wide range of systems. For the sake of
simplicity, we restrict the discussion/comparisons to the simpler case of nuclei
versus metal cluster for which direct scaling are more easily attainable. A few
key characteristics of nuclei and metal clusters are summarized in Table 1.

Table 1. Gross characteristics of nuclei and clusters. One successively considers the radii
of systems of size A (nuclei) or N (clusters), the typical distance between constituents,
and the typical mean free path. Distances are expressed in terms of r0 for nuclei and
Wigner Seitz radius rs for clusters.

Nuclei (A) Metal clusters (N )

Radius R ∼ r0A
1/3 R ∼ rsN

1/3

Interconstituents distance d ∼ 1.5 − 2r0,s

Mean free path λ ∼ R

Both nuclei and metal clusters exhibit a “saturating” behavior with radii
scaling as a power 1/3 of system’s size. Each electron or nucleon thus occu-
pies the same volume (4/3)πr0,s

3, so that the average density of these systems
is ρ ∼ 3/(4πr0,s

3) independent of the system size. The parameter r0,s fixes
characteristic scales in these systems, for example the typical interconstituent
distance. The mean free path is typically of the order of magnitude of the actual
size of the system, which motivates a mean-field approach (see next section).
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2.2 How to Justify a Mean-Field Picture?

The free nucleon-nucleon interaction is strongly repulsive at short range [7]
which at first glance makes a mean-field theory questionable. But the strong
Pauli correlations in nuclei suppress low energy scattering, which renormalizes
the short-range part of the nuclear interaction in medium. The finally delivered
interaction is smooth enough to justify a mean-field picture [7]. A somewhat
similar reasoning holds in the case of metal clusters. While the general atomic
problem is originally singular, only valence electrons actually take part in the
binding of molecular systems or clusters. The case of simple metals is espe-
cially forgiving in this respect, as the valence shell is well separated from core
levels. Electrons can then easily delocalize to form the rather “soft” metal bonds.
This provides again a good candidate for a mean-field treatment, as exemplified
by the many successes of Density Functional Theory (DFT), even in its simplest
Local Density Approximation (LDA) version [8].

2.3 Mean-Field and Beyond

2.3.1 Quantum Mean-Field: A Starting Point

In both cases (nuclei and metal clusters), a mean-field theory thus provides a
sound starting point. The mean-field Hamiltonian are “effective” as correlations
are packed in density-dependent terms of the effective interactions, or density
functionals respectively.

We start with a set of one-body wave functions (nucleons or electrons) ϕi

which provides the time-dependent one-body density matrix ρ̂(r, r′, t) and the
local time-dependent one-body density �(r, t) = ρ̂(r, r, t). The ϕi follow effec-
tive Schrödinger equations

i�
∂|ϕi〉
∂t

= ĥ[�(r, t)]|ϕi〉 . (1)

The Hamiltonian ĥ is expressed as functionals of the density �(r, t).In nuclei,
a standard form is provided by the Skyrme expression with parameters fitted to
basic nuclear properties [7]. The Skyrme Hamiltonian is complemented by a
Coulomb contribution acting on protons. In metal clusters, the one-body Hamil-
tonian is primarily constituted of the Hartree term VH [�] complemented by the
DFT-LDA expression for exchange and correlation Vxc

ĥ[�] =
p̂2

2m
+ VH [�] + Vxc[�] + Vext(r, t) (2)

The external one-body potential here accounts for ions (via pseudopotentials)
and for coupling to an external excitation field (a by-passing projectile or a time-
dependent electric field from a laser).
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2.3.2 From Quantum to Semi-Classical Mean-Field

The quantum mean-field constitutes a good starting basis for deriving a semi-
classical approximation on the basis of the Vlasov equation. We rewrite the
mean-field equation in the equivalent matrix form Passing to the semi-classical
limit then amounts to transform the density operator ρ̂ into a one-body phase
space distribution f(r,p, t) and the commutator into Poisson brackets :

ρ̂(r, r′, t) −→ f(r,p, t)
[ . , . ] −→ { . , . } (3)

which leads to the Vlasov equation The one-body Hamiltonian has the same ex-
pression in terms of the density �(r) as in the quantal form, but the density is now
computed from the phase space density as The Vlasov equation has been derived
discarding all higher order terms in �, thus neglecting all quantum diffraction ef-
fects, as e.g. shell structure or tunnelling.

It should be noted here that nothing distinguishes the resulting (semi-classical)
Vlasov equation from the strictly classical one, not mentioning Fermi stability
of simulations. This question is by no means trivial, nor is the more formal is-
sue of the smoothness to be delivered to f(r,p, t) for justifying a semi-classical
approximation, see for example [10]. Finally, even if the above quantum to semi-
classics step may be formally founded, the question of its actual validity remains
open. mean-field is justified by long mean free paths but it remains to evaluate
how far quantum effects are lost in a semi-classical picture. In other words, the
semi-classical approximation is certainly not justified in any situation. A good
indicator for that is the de Broglie wavelength (see Section 2.3.4).

2.3.3 Beyond Mean-Field: the VUU Approach

The mean-field picture may become insufficient when one enters the strongly
non-linear domain. A natural step beyond Vlasov is provided by kinetic equa-
tions by addition of a collision integral mimicking dynamical correlations: parti-
cle-particle scattering can then easily be included as a Markovian collision term
acting on f . This has been worked out in great detail in nuclear physics applica-
tions [11]. The Vlasov equation for metal clusters can as well be complemented
by a Uehling-Uhlenbeck [5] collision term. The resulting so called VUU equa-
tion reads

∂f

∂t
= {h, f} +

∫
d3p2dΩ
(2π�)3

dσ
dΩ

|v12|
{
f1f2(1 − f3/2)(1 − f4/2))

− f3f4(1 − f1/2)(1 − f2/2))
}

(4)

where v12 is the relative velocity of the colliding particles 1 and 2. The fac-
tor dσ/dΩ is the differential cross section evaluated in the center of mass frame
of the two colliding particles. Indices 3 and 4 label the moments of the two
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particles after an elementary collision and we use the standard abbreviation
fi = f(r,pi, t). The collision is purely local in space r = r1 = r2 = r3 = r4.
Outgoing momenta p3 and p4 are deduced from p1 and p2 by conservation of
energy, of total momentum, and by scattering angle Ω. Pauli blocking factors
(1 − fi/2)(1 − fj/2) play an important role here by enforcing Pauli principle
in the course of fermion collisions. In the ground state, they correctly block all
kinematically possible (and thus classically possible) collisions. At high excita-
tion energy phase space opens up and two body collisions start to populate it in
the course of thermalization.

2.3.4 The regime for a semi-classical approximation

A standard measure for the importance of quantum effects is provided by the de
Broglie wavelength λB . Let us evaluate λB = h/p = 2π/k where p (= �k)
is a typical momentum of the system. The actual value of p depends on the
dynamical scenario, but we first evaluate it in the ground state. The saturating
nature of nuclei and metal clusters allows to adopt the Fermi gas picture where
the average energy per particle is ε = 3εF/5, delivering an average value of
k �√3/5kF. The Fermi momentum kF is directly linked to the average density
ρ = kF

3/(3π2) leading finally to kFr0,s = (9π/4)1/3 � 2, which provides
typical value of λB in relation to the basic scale of the system r0,s :

λB =
2π
〈k〉 =

2π√
3/5kF

=
2π√

3/5(9π/4)1/3
r0,s.

We obtain λB/r0,s � 4, about 2 − 3 times the typical distance between con-
stituents. Nuclei and metal clusters in their ground state are thus deep in the
quantal regime and a semi-classical description is only marginally acceptable.

Let us now consider dynamical scenarios, namely intermediate energy heavy
ion collisions for nuclei and laser irradiations for metal clusters. In heavy-
ion collisions, the typical Fermi gas average momentum 〈k〉 is to be comple-
mented by the beam momentum kb (with proper center of mass correction). In
a symmetric system (projectile = target) half the beam energy Elab/A is ac-
tive in relative motion. The delivered momentum per nucleon is thus given by
(�2/2m)k2

b = Elab/(2A), which leads to kb ∼ kF for Elab/A ∼ 80 − 100
MeV/A. For such beam energies, the typical de Broglie wavelength is thus re-
duced by more than a factor 2 which makes the Vlasov equation acceptable.

In metal clusters, let us consider irradiation by “intense” lasers. Writing
pω = eE where E is the amplitude of the laser field and ω its frequency (typ-
ically in the optical domain) and expressing the amplitude as a function of the
laser intensity (I ∝ E2) allows to relate typical values of the momentum to the
laser intensity ∝ √

I . One recovers the Fermi momentum for I ∼ 1010 W/cm2

for an optical photon (�ω ∼ 3 eV). A semi-classical approach should be well
justified above such laser intensities.
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3 From Successes to New Questions

3.1 Some Successes

The use of the VUU approach in nuclear dynamics started in the mid 1980’s and
led to many satisfying results, especially in the study of the properties of hot
nuclei [3]. The limitations of these approaches were rapidly reached when con-
sidering highly excited situations leading to fragmentation of the excited system.
This led to the appearance of various, sometimes ad hoc approaches in order to
in particular include the strong fluctuations associated to these highly dissipa-
tive dynamical scenarios. A schematic (but non exhaustive) picture of these
theories is presented in Figure 3. While the extensions of nuclear time depen-
dent mean-field (TDHF) were basically stalled since the early 1980’s several
so-called “Molecular Dynamics” (MD) approaches were developed. The most
sound approaches were the so called AMD and FMD methods [12] which, while
allowing fragmentation scenarios, preserve most of the crucial quantum mean-
field. Dissipation is included by means of a VUU-like collision term which
makes the overall theory a mixture of quantum and classical approaches.

The case of clusters has been much less investigated. A few VUU calcula-

Figure 3. Sketch of theories of the nuclear many body problem in the time domain. In
parallel to many-body dynamics (Molecular Dynamics approaches) mean-field is a major
issue (TDHF) which needs to be extended to account for dissipation. A major way here
was attained through semi-classical approaches [11]. Extended TDHF approaches were
only little considered since the 1980’s [9] but for isolated attempts such as Stochastic
TDHF [14]. The AMD/FMD track provide an acceptable compromise in many cases
between quantal features and practical issues [12].
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tions were performed as early as the late 1990’s with applications to high inten-
sity laser excitations [5]. More recently, similar calculations were performed for
various irradiation scenarios [13].

3.2 Need for Quantum Effects

The successes attained by VUU or AMD/FMD approaches in nuclear physics,
and, to a lesser extent, by VUU in cluster dynamics should not lead to the con-
clusion that the problem is fully solved. On the one hand, such approaches are
fully justified in the rather high energy domain. On the other hand, there also ex-
ist some fundamental restrictions at the side of the actual content of the theories.
The major restriction of the most elaborate AMD/FMD approaches concern the
fact that the effect of 2-body collisions is treated semi-classically. This raises
formal questions and restrict the use of these theories, in principle, to rather
energetic processes, even if pure mean-field calculations (at very low energies)
are certainly valid in this approximate TDHF scheme. The case of electronic
systems is even more plagued by the semi-classical approximation in the sense
that all Vlasov/VUU calculations can be performed only in simple metals like
Na or K. This singularity restricts the range of applications. An example such
as C60 illustrated in Figure 2 cannot be in reach of such theories. This adds
up to the fact, again, that dissipation is also accounted for via a semi-classical
collision term which restricts its range of potential applications in terms of dy-
namical regimes. The electronic case thus somewhat paradocally doubly suffers
from the semi-classical content of the underlying theories. This is all the more
infortunate than dissipative dynamics is more and more explored in electron dy-
namics in clusters and molecules, while the nuclear case has been somewhat less
explored during the last years.

3.3 Need for a (New?) Theory

The need for new theories is thus rather clear even if, depending on the field,
their necessity is more or less urgent. The basic requirements are that i) one
would recover standard time dependent mean-field at vanishing excitation and
ii) one would like to account for quantum effects, as much as possible, at the
side of dissipation, which would allow to treat low energy cases. Finally, it
might also be worth accounting for fluctuations associated to dissipation and
thus have an ensemble description rather than one based on a single Slater state.
An example of such a theory was proposed two decades ago in the nuclear con-
text but unfortunately not really tested on realistic cases [14]. The idea was to
compute dynamical correlations perturbatively and implement them at the side
of an ensemble of Slater states in a statistical manner. The implementation of
this approach in the nuclear was considered on some test examples [15] using
a semi-classical treatment of correlations in the spirit of AMD, but keeping a
full description of the TDHF dynamics. It has nevertheless not been further ex-
plored since then. The new developments in low energy nuclear dynamics might

214



Dissipation in Quantum Time-Dependent Mean Field

Figure 4. Same as Figure 3 but for electrons. Only few attempts do exist beyond mere
TDDFT.

motivate some new investigations with this approach.
The electronic case is even less explored as illustrated in Figure 4. One

should furthermore realize that the problem is complicated here by the pres-
ence of ions whose dynamics itself is to be taken into account. A whole class
of approaches have been devoted to these studies and are known as Trajectory
Surface Hopping ones [16]. The idea is to allow the system to hop from one
potential energy surface to a neighbouring one when ionic motion brings two
potential energy surface sufficiently close to each other. This does not directly
address true dissipation as encountered in high energy phenomena, for example
in laser irradiations. But it already covers some low energy aspects of the prob-
lem. Practically, the picture is limited to rather simple cases where only a few
potential energy surfaces may come close to each other which singularly limits
the range of applications of such theories. Furthermore, hopping algorithms are
a bit heuristic and would certainly deserve close examination in order to be ap-
plied in a general “on the fly” manner. There is thus here a lot to be done before
reaching a true account of dissipation in electronic dynamics.

4 Next Steps

The next steps to go have been a bit outlined in the previous sections. There ad-
mittedly exist a bunch of studies on this basic theoretical problem of account of
dissipation in time-dependent quantum mean-field theories. Nuclear physics has
provided a rich corpus of results within the semi-classical domain, even account-
ing for a sizable fraction of quantum effects at the mean-field side. Dissipation
itself has nevertheless always been approached in a semi-classical manner. The
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situation in electronic systems is even more open with only few tentative explo-
rations following the now flourishing experiments in the domain as attainable
with new laser facilities. In that respect, there is thus certainly a challenging
problem to address.
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