Improving our Understanding of the Symmetry Energy

Francesca Sammarruca

University of Idaho, U.S.A.

Our recent efforts have focussed on microscopic predictions of the nuclear equation of state (EoS) under diverse conditions [1]. Our *ab initio* approach is microscopic and relativistic and employs the Dirac-Brueckner-Hartree-Fock method. Within this framework, nuclear matter proprties are derived self-consistently from realistic nuclear potentials.

We have been particularly concerned with investigations of isospin asymmetric matter, which reach out to a variety of systems, ranging from rare isotopes to neutron stars. The "common denominator" is the symmetry energy, which plays a crucial role in the formation of the neutron skin in neutron-rich nuclei and the radius of a neutron star. The *symmetry pressure* parameter, which displays the density dependence of the symmetry energy close to saturation density, is very sensitive to the details of theoretical models. High-precision measurements of the (strongly correlated) neutron skin in isospin-asymmetric nuclei, as they are expected from the JLab electroweak program, have the potential to discriminate among various equations of state.

This talk will review a broad spectrum of studies aimed at improving our knowledge of isospin asymmetric nuclear matter, including its extreme states with respect to density and/or spin and isospin asymmetry [2].

Most recently, we have explored the sensitivity of the total nucleusnucleus reaction cross section to medium effects and isospin asymmetries [3]. Both major ingredients of the reaction cross section, namely the nuclear densities and the (medium-modified) nucleon-nucleon cross sections, are closely related to our microscopic EoS, making all aspects of the calculation internally consistent with one underlying nuclear interaction.

References

- [1] F. Sammarruca, Int. J. Mod. Phys. E 19 (2010) 1259.
- [2] F. Sammarruca, Phys. Rev. C 83 (2011) 064304.
- [3] F. Sammarruca and L. White, Phys. Rev. C 83 (2011) 064602.